On an initial inverse problem in nonlinear heat equation associated with time-dependent coefficient

Tuan Nguyen Huy

Applications of Mathematics (2014)

  • Volume: 59, Issue: 4, page 453-472
  • ISSN: 0862-7940

Abstract

top
In this paper, a nonlinear backward heat problem with time-dependent coefficient in the unbounded domain is investigated. A modified regularization method is established to solve it. New error estimates for the regularized solution are given under some assumptions on the exact solution.

How to cite

top

Nguyen Huy, Tuan. "On an initial inverse problem in nonlinear heat equation associated with time-dependent coefficient." Applications of Mathematics 59.4 (2014): 453-472. <http://eudml.org/doc/261922>.

@article{NguyenHuy2014,
abstract = {In this paper, a nonlinear backward heat problem with time-dependent coefficient in the unbounded domain is investigated. A modified regularization method is established to solve it. New error estimates for the regularized solution are given under some assumptions on the exact solution.},
author = {Nguyen Huy, Tuan},
journal = {Applications of Mathematics},
keywords = {nonlinear heat problem; ill-posed problem; Fourier transform; time-dependent coefficient; nonlinear heat problem; ill-posed problem; Fourier transform; time-dependent coefficient},
language = {eng},
number = {4},
pages = {453-472},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On an initial inverse problem in nonlinear heat equation associated with time-dependent coefficient},
url = {http://eudml.org/doc/261922},
volume = {59},
year = {2014},
}

TY - JOUR
AU - Nguyen Huy, Tuan
TI - On an initial inverse problem in nonlinear heat equation associated with time-dependent coefficient
JO - Applications of Mathematics
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 4
SP - 453
EP - 472
AB - In this paper, a nonlinear backward heat problem with time-dependent coefficient in the unbounded domain is investigated. A modified regularization method is established to solve it. New error estimates for the regularized solution are given under some assumptions on the exact solution.
LA - eng
KW - nonlinear heat problem; ill-posed problem; Fourier transform; time-dependent coefficient; nonlinear heat problem; ill-posed problem; Fourier transform; time-dependent coefficient
UR - http://eudml.org/doc/261922
ER -

References

top
  1. Cheng, W., L.-Fu, C., 10.1080/17415970903063193, Inverse Probl. Sci. Eng. 17 (2009), 1085-1093. (2009) MR2573817DOI10.1080/17415970903063193
  2. Clark, G. W., Oppenheimer, S. F., Quasireversibility methods for non-well-posed problems, Electron. J. Differ. Equ. 1994 (1994), 1-9 (electronic). (1994) Zbl0811.35157MR1302574
  3. Denche, M., Bessila, K., 10.1016/j.jmaa.2004.08.001, J. Math. Anal. Appl. 301 (2005), 419-426. (2005) Zbl1084.34536MR2105682DOI10.1016/j.jmaa.2004.08.001
  4. Fu, C.-L., Xiong, X.-T., Qian, Z., 10.1016/j.jmaa.2006.08.040, J. Math. Anal. Appl. 331 (2007), 472-480. (2007) Zbl1146.35420MR2306017DOI10.1016/j.jmaa.2006.08.040
  5. Lattès, R., Lions, J.-L., Méthode de Quasi-Réversibilité et Applications, French Travaux et Recherches Mathématiques 15 Dunod, Paris (1967). (1967) Zbl0159.20803MR0232549
  6. Liu, C.-S., 10.1016/j.ijheatmasstransfer.2003.12.019, Int. J. Heat Mass Transfer 47 (2004), 2567-2576. (2004) Zbl1100.80005DOI10.1016/j.ijheatmasstransfer.2003.12.019
  7. Payne, L., Improperly Posed Problems in Partial Differential Equations, CBMS-NSF Regional Conference Series in Applied Mathematics 22 SIAM, Philadelphia (1975). (1975) Zbl0302.35003MR0463736
  8. Qian, Z., Fu, C.-L., Shi, R., 10.1016/j.amc.2006.07.055, Appl. Math. Comput. 185 (2007), 564-573. (2007) Zbl1112.65090MR2297827DOI10.1016/j.amc.2006.07.055
  9. Quan, P. H., Trong, D. D., 10.1080/00036810500474671, Appl. Anal. 85 (2006), 641-657. (2006) Zbl1099.35045MR2232412DOI10.1080/00036810500474671
  10. Quan, P. H., Trong, D. D., Triet, L. M., Tuan, N. H., 10.1080/17415977.2011.552111, Inverse Probl. Sci. Eng. 19 (2011), 409-423. (2011) Zbl1227.65089MR2795221DOI10.1080/17415977.2011.552111
  11. Seidman, T. I., 10.1137/0733010, SIAM J. Numer. Anal. 33 (1996), 162-170. (1996) Zbl0851.65066MR1377249DOI10.1137/0733010
  12. Showalter, R. E., 10.1016/0022-247X(74)90008-0, J. Math. Anal. Appl. 47 (1974), 563-572. (1974) Zbl0296.34059MR0352644DOI10.1016/0022-247X(74)90008-0
  13. Tautenhahn, U., Schröter, T., 10.4171/ZAA/711, Z. Anal. Anwend. 15 (1996), 475-493. (1996) MR1394439DOI10.4171/ZAA/711
  14. Trong, D. D., Tuan, N. H., 10.1016/j.na.2009.02.092, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 4167-4176. (2009) Zbl1172.35517MR2536322DOI10.1016/j.na.2009.02.092
  15. Wang, J. R., 10.1016/j.cam.2011.01.001, J. Comput. Appl. Math. 235 (2011), 3079-3085. (2011) Zbl1233.65068MR2771288DOI10.1016/j.cam.2011.01.001
  16. z, B. Yıldı, Yetişkin, H., Sever, A., 10.1016/S0096-3003(02)00069-3, Appl. Math. Comput. 135 (2003), 561-567. (2003) MR1937275DOI10.1016/S0096-3003(02)00069-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.