On an initial inverse problem in nonlinear heat equation associated with time-dependent coefficient
Applications of Mathematics (2014)
- Volume: 59, Issue: 4, page 453-472
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topNguyen Huy, Tuan. "On an initial inverse problem in nonlinear heat equation associated with time-dependent coefficient." Applications of Mathematics 59.4 (2014): 453-472. <http://eudml.org/doc/261922>.
@article{NguyenHuy2014,
abstract = {In this paper, a nonlinear backward heat problem with time-dependent coefficient in the unbounded domain is investigated. A modified regularization method is established to solve it. New error estimates for the regularized solution are given under some assumptions on the exact solution.},
author = {Nguyen Huy, Tuan},
journal = {Applications of Mathematics},
keywords = {nonlinear heat problem; ill-posed problem; Fourier transform; time-dependent coefficient; nonlinear heat problem; ill-posed problem; Fourier transform; time-dependent coefficient},
language = {eng},
number = {4},
pages = {453-472},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On an initial inverse problem in nonlinear heat equation associated with time-dependent coefficient},
url = {http://eudml.org/doc/261922},
volume = {59},
year = {2014},
}
TY - JOUR
AU - Nguyen Huy, Tuan
TI - On an initial inverse problem in nonlinear heat equation associated with time-dependent coefficient
JO - Applications of Mathematics
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 4
SP - 453
EP - 472
AB - In this paper, a nonlinear backward heat problem with time-dependent coefficient in the unbounded domain is investigated. A modified regularization method is established to solve it. New error estimates for the regularized solution are given under some assumptions on the exact solution.
LA - eng
KW - nonlinear heat problem; ill-posed problem; Fourier transform; time-dependent coefficient; nonlinear heat problem; ill-posed problem; Fourier transform; time-dependent coefficient
UR - http://eudml.org/doc/261922
ER -
References
top- Cheng, W., L.-Fu, C., 10.1080/17415970903063193, Inverse Probl. Sci. Eng. 17 (2009), 1085-1093. (2009) MR2573817DOI10.1080/17415970903063193
- Clark, G. W., Oppenheimer, S. F., Quasireversibility methods for non-well-posed problems, Electron. J. Differ. Equ. 1994 (1994), 1-9 (electronic). (1994) Zbl0811.35157MR1302574
- Denche, M., Bessila, K., 10.1016/j.jmaa.2004.08.001, J. Math. Anal. Appl. 301 (2005), 419-426. (2005) Zbl1084.34536MR2105682DOI10.1016/j.jmaa.2004.08.001
- Fu, C.-L., Xiong, X.-T., Qian, Z., 10.1016/j.jmaa.2006.08.040, J. Math. Anal. Appl. 331 (2007), 472-480. (2007) Zbl1146.35420MR2306017DOI10.1016/j.jmaa.2006.08.040
- Lattès, R., Lions, J.-L., Méthode de Quasi-Réversibilité et Applications, French Travaux et Recherches Mathématiques 15 Dunod, Paris (1967). (1967) Zbl0159.20803MR0232549
- Liu, C.-S., 10.1016/j.ijheatmasstransfer.2003.12.019, Int. J. Heat Mass Transfer 47 (2004), 2567-2576. (2004) Zbl1100.80005DOI10.1016/j.ijheatmasstransfer.2003.12.019
- Payne, L., Improperly Posed Problems in Partial Differential Equations, CBMS-NSF Regional Conference Series in Applied Mathematics 22 SIAM, Philadelphia (1975). (1975) Zbl0302.35003MR0463736
- Qian, Z., Fu, C.-L., Shi, R., 10.1016/j.amc.2006.07.055, Appl. Math. Comput. 185 (2007), 564-573. (2007) Zbl1112.65090MR2297827DOI10.1016/j.amc.2006.07.055
- Quan, P. H., Trong, D. D., 10.1080/00036810500474671, Appl. Anal. 85 (2006), 641-657. (2006) Zbl1099.35045MR2232412DOI10.1080/00036810500474671
- Quan, P. H., Trong, D. D., Triet, L. M., Tuan, N. H., 10.1080/17415977.2011.552111, Inverse Probl. Sci. Eng. 19 (2011), 409-423. (2011) Zbl1227.65089MR2795221DOI10.1080/17415977.2011.552111
- Seidman, T. I., 10.1137/0733010, SIAM J. Numer. Anal. 33 (1996), 162-170. (1996) Zbl0851.65066MR1377249DOI10.1137/0733010
- Showalter, R. E., 10.1016/0022-247X(74)90008-0, J. Math. Anal. Appl. 47 (1974), 563-572. (1974) Zbl0296.34059MR0352644DOI10.1016/0022-247X(74)90008-0
- Tautenhahn, U., Schröter, T., 10.4171/ZAA/711, Z. Anal. Anwend. 15 (1996), 475-493. (1996) MR1394439DOI10.4171/ZAA/711
- Trong, D. D., Tuan, N. H., 10.1016/j.na.2009.02.092, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 4167-4176. (2009) Zbl1172.35517MR2536322DOI10.1016/j.na.2009.02.092
- Wang, J. R., 10.1016/j.cam.2011.01.001, J. Comput. Appl. Math. 235 (2011), 3079-3085. (2011) Zbl1233.65068MR2771288DOI10.1016/j.cam.2011.01.001
- z, B. Yıldı, Yetişkin, H., Sever, A., 10.1016/S0096-3003(02)00069-3, Appl. Math. Comput. 135 (2003), 561-567. (2003) MR1937275DOI10.1016/S0096-3003(02)00069-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.