On near-optimal necessary and sufficient conditions for forward-backward stochastic systems with jumps, with applications to finance
Mokhtar Hafayed; Petr Veverka; Syed Abbas
Applications of Mathematics (2014)
- Volume: 59, Issue: 4, page 407-440
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHafayed, Mokhtar, Veverka, Petr, and Abbas, Syed. "On near-optimal necessary and sufficient conditions for forward-backward stochastic systems with jumps, with applications to finance." Applications of Mathematics 59.4 (2014): 407-440. <http://eudml.org/doc/261933>.
@article{Hafayed2014,
abstract = {We establish necessary and sufficient conditions of near-optimality for nonlinear systems governed by forward-backward stochastic differential equations with controlled jump processes (FBSDEJs in short). The set of controls under consideration is necessarily convex. The proof of our result is based on Ekeland's variational principle and continuity in some sense of the state and adjoint processes with respect to the control variable. We prove that under an additional hypothesis, the near-maximum condition on the Hamiltonian function is a sufficient condition for near-optimality. At the end, as an application to finance, mean-variance portfolio selection mixed with a recursive utility optimization problem is given.},
author = {Hafayed, Mokhtar, Veverka, Petr, Abbas, Syed},
journal = {Applications of Mathematics},
keywords = {stochastic near-optimal controls; jump processes; forward-backward stochastic systems with jumps; necessary and sufficient conditions for near-optimality; Ekeland's variational principle; stochastic near-optimal controls; jump processes; forward-backward stochastic systems with jumps; necessary and sufficient conditions for near-optimality; Ekeland's variational principle},
language = {eng},
number = {4},
pages = {407-440},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On near-optimal necessary and sufficient conditions for forward-backward stochastic systems with jumps, with applications to finance},
url = {http://eudml.org/doc/261933},
volume = {59},
year = {2014},
}
TY - JOUR
AU - Hafayed, Mokhtar
AU - Veverka, Petr
AU - Abbas, Syed
TI - On near-optimal necessary and sufficient conditions for forward-backward stochastic systems with jumps, with applications to finance
JO - Applications of Mathematics
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 4
SP - 407
EP - 440
AB - We establish necessary and sufficient conditions of near-optimality for nonlinear systems governed by forward-backward stochastic differential equations with controlled jump processes (FBSDEJs in short). The set of controls under consideration is necessarily convex. The proof of our result is based on Ekeland's variational principle and continuity in some sense of the state and adjoint processes with respect to the control variable. We prove that under an additional hypothesis, the near-maximum condition on the Hamiltonian function is a sufficient condition for near-optimality. At the end, as an application to finance, mean-variance portfolio selection mixed with a recursive utility optimization problem is given.
LA - eng
KW - stochastic near-optimal controls; jump processes; forward-backward stochastic systems with jumps; necessary and sufficient conditions for near-optimality; Ekeland's variational principle; stochastic near-optimal controls; jump processes; forward-backward stochastic systems with jumps; necessary and sufficient conditions for near-optimality; Ekeland's variational principle
UR - http://eudml.org/doc/261933
ER -
References
top- Bahlali, K., Khelfallah, N., Mezerdi, B., 10.1016/j.sysconle.2009.10.005, Syst. Control Lett. 58 (2009), 857-864. (2009) Zbl1191.93142MR2642755DOI10.1016/j.sysconle.2009.10.005
- Bellman, R., Dynamic Programming. With a new introduction by Stuart Dreyfus. Reprint of the 1957 edition, Princeton Landmarks in Mathematics Princeton University Press, Princeton (2010). (2010) MR2641641
- Boel, R., Varaiya, P., 10.1137/0315008, SIAM J. Control Optim. 15 (1977), 92-119. (1977) Zbl0358.93047MR0441521DOI10.1137/0315008
- Bouchard, B., Elie, R., 10.1016/j.spa.2007.03.010, Stochastic Processes Appl. 118 (2008), 53-75. (2008) Zbl1136.60048MR2376252DOI10.1016/j.spa.2007.03.010
- Cadenillas, A., 10.1016/S0167-6911(02)00231-1, Syst. Control Lett. 47 (2002), 433-444. (2002) Zbl1106.93342MR2008454DOI10.1016/S0167-6911(02)00231-1
- Ekeland, I., 10.1016/0022-247X(74)90025-0, J. Math. Anal. Appl. 47 (1974), 324-353. (1974) Zbl0286.49015MR0346619DOI10.1016/0022-247X(74)90025-0
- Karoui, N. El, Peng, S. G., Quenez, M. C., 10.1111/1467-9965.00022, Math. Finance 7 (1997), 1-71. (1997) Zbl0884.90035MR1434407DOI10.1111/1467-9965.00022
- Karoui, N. El, Peng, S. G., Quenez, M. C., 10.1214/aoap/1015345345, Ann. Appl. Probab. 11 (2001), 664-693. (2001) Zbl1040.91038MR1865020DOI10.1214/aoap/1015345345
- Framstad, N. C., Øksendal, B., Sulem, A., 10.1023/B:JOTA.0000026132.62934.96, J. Optim. Theory. Appl. 121 (2004), 77-98; erratum ibid. 124 511-512 (2005). (2005) Zbl1140.93496MR2062971DOI10.1023/B:JOTA.0000026132.62934.96
- Gabasov, R., Kirillova, F. M., Mordukhovich, B. Sh., The -maximum principle for suboptimal controls, Sov. Math., Dokl. 27 (1983), 95-99 translation from Dokl. Akad. Nauk SSSR 268 525-529 (1983), Russian. (1983) MR0691086
- Hafayed, M., Abbas, S., Veverka, P., 10.1007/s11590-012-0484-6, Optim. Lett. 7 (2013), 949-966. (2013) Zbl1272.93129MR3057402DOI10.1007/s11590-012-0484-6
- Hafayed, M., Veverka, P., Abbas, S., 10.1007/s12591-012-0108-8, Differ. Equ. Dyn. Syst. 20 (2012), 111-125. (2012) Zbl1261.49004MR2929755DOI10.1007/s12591-012-0108-8
- Huang, J., Li, X., Wang, G., 10.1016/j.automatica.2009.11.016, Automatica 46 (2010), 397-404. (2010) Zbl1205.93165MR2877086DOI10.1016/j.automatica.2009.11.016
- Jeanblanc-Picqué, M., Pontier, M., 10.1007/BF01447332, Appl. Math. Optimization 22 (1990), 287-310. (1990) Zbl0715.90014MR1068184DOI10.1007/BF01447332
- Karatzas, I., Lehoczky, J. P., Shreve, S. E., 10.1137/0325086, SIAM J. Control Optim. 25 (1987), 1557-1586. (1987) Zbl0644.93066MR0912456DOI10.1137/0325086
- Mordukhovich, B. Sh., Approximation Methods in Problems of Optimization and Control, Russian Nauka Moskva (1988). (1988) Zbl0643.49001MR0945143
- Oksendal, B., Sulem, A., Applied Stochastic Control of Jump Diffusions. Second edition, Universitext Springer, Berlin (2007). (2007) MR2322248
- Pan, L. P., Teo, K. L., 10.1023/A:1021741627449, J. Optimization Theory Appl. 101 (1999), 355-373. (1999) MR1684675DOI10.1023/A:1021741627449
- Peng, S., Wu, Z., 10.1137/S0363012996313549, SIAM J. Control Optim. 37 (1999), 825-843. (1999) MR1675098DOI10.1137/S0363012996313549
- Pontryagin, L. S., Boltanskii, V. G., Gamkrelidze, R. V., Mishchenko, E. F., The Mathematical Theory of Optimal Processes, Translation from the Russian Interscience Publishers, New York (1962). (1962)
- Rishel, R., 10.1007/978-3-642-46317-4_35, Control Theory, Numer. Meth., Computer Syst. Mod.; Internat. Symp. Rocquencourt 1974, Lecture Notes Econ. Math. Syst. 107 (1975), 493-508. (1975) Zbl0313.93065MR0386829DOI10.1007/978-3-642-46317-4_35
- Shi, J., Necessary conditions for optimal control of forward-backward stochastic systems with random jumps, Int. J. Stoch. Anal. 2012 Article ID 258674, 50 pp (2012). (2012) Zbl1239.93132MR2909930
- Shi, J., Wu, Z., The maximum principle for fully coupled forward-backward stochastic control system, Acta Autom. Sin. 32 (2006), 161-169. (2006) MR2230926
- Shi, J., Wu, Z., Maximum principle for fully coupled forward-backward stochastic control system with random jumps, Proceedings of the 26 Chinese Control Conference, Zhangjiajie, Hunan, 2007, pp. 375-380. MR2230926
- Shi, J., Wu, Z., 10.1007/s11424-010-7224-8, J. Syst. Sci. Complex. 23 (2010), 219-231. (2010) Zbl1197.93165MR2653585DOI10.1007/s11424-010-7224-8
- Situ, R., A maximum principle for optimal controls of stochastic systems with random jumps, Proceedings of National Conference on Control Theory and its Applications Qingdao, China (1991). (1991)
- Tang, S. L., Li, X. J., 10.1137/S0363012992233858, SIAM J. Control Optim. 32 (1994), 1447-1475. (1994) Zbl0922.49021MR1288257DOI10.1137/S0363012992233858
- Xu, W., 10.1017/S0334270000007645, J. Aus. Math. Soc., Ser. B 37 (1995), 172-185. (1995) Zbl0862.93067MR1359179DOI10.1017/S0334270000007645
- Yong, J., 10.1137/090763287, SIAM J. Control. Optim. 48 (2010), 4119-4156. (2010) MR2645476DOI10.1137/090763287
- Yong, J., Zhou, X. Y., Stochastic Controls. Hamiltonian Systems and HJB Equations, Applications of Mathematics 43 Springer, New York (1999). (1999) Zbl0943.93002MR1696772
- Zhou, X. Y., 10.1007/BF02192237, J. Optimization Theory Appl. 85 (1995), 473-488. (1995) Zbl0826.49015MR1333798DOI10.1007/BF02192237
- Zhou, X. Y., 10.1287/moor.21.3.655, Math. Oper. Res. 21 (1996), 655-674. (1996) Zbl0858.49023MR1403310DOI10.1287/moor.21.3.655
- Zhou, X. Y., 10.1137/S0363012996302664, SIAM J. Control. Optim. 36 (1998), 929-947 (electronic). (1998) Zbl0914.93073MR1613885DOI10.1137/S0363012996302664
- Zhou, X. Y., Li, D., Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Appl. Math. Optimization 42 (2000), 19-33. (2000) Zbl0998.91023MR1751306
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.