Quantum-graph vertex couplings: some old and new approximations

Stepan Manko

Mathematica Bohemica (2014)

  • Volume: 139, Issue: 2, page 259-267
  • ISSN: 0862-7959

Abstract

top
In 1986 P. Šeba in the classic paper considered one-dimensional pseudo-Hamiltonians containing the first derivative of the Dirac delta function. Although the paper contained some inaccuracy, it was one of the starting points in approximating one-dimension self-adjoint couplings. In the present paper we develop the above results to the case of quantum systems with complex geometry.

How to cite

top

Manko, Stepan. "Quantum-graph vertex couplings: some old and new approximations." Mathematica Bohemica 139.2 (2014): 259-267. <http://eudml.org/doc/261946>.

@article{Manko2014,
abstract = {In 1986 P. Šeba in the classic paper considered one-dimensional pseudo-Hamiltonians containing the first derivative of the Dirac delta function. Although the paper contained some inaccuracy, it was one of the starting points in approximating one-dimension self-adjoint couplings. In the present paper we develop the above results to the case of quantum systems with complex geometry.},
author = {Manko, Stepan},
journal = {Mathematica Bohemica},
keywords = {quantum graph; vertex coupling; singularly scaled potential; quantum graph; vertex coupling; singularly scaled potential},
language = {eng},
number = {2},
pages = {259-267},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Quantum-graph vertex couplings: some old and new approximations},
url = {http://eudml.org/doc/261946},
volume = {139},
year = {2014},
}

TY - JOUR
AU - Manko, Stepan
TI - Quantum-graph vertex couplings: some old and new approximations
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 2
SP - 259
EP - 267
AB - In 1986 P. Šeba in the classic paper considered one-dimensional pseudo-Hamiltonians containing the first derivative of the Dirac delta function. Although the paper contained some inaccuracy, it was one of the starting points in approximating one-dimension self-adjoint couplings. In the present paper we develop the above results to the case of quantum systems with complex geometry.
LA - eng
KW - quantum graph; vertex coupling; singularly scaled potential; quantum graph; vertex coupling; singularly scaled potential
UR - http://eudml.org/doc/261946
ER -

References

top
  1. Albeverio, S., Cacciapuoti, C., Finco, D., 10.1063/1.2710197, J. Math. Phys. 48 (2007), Article ID 032103, 21 pages. (2007) Zbl1137.81330MR2314483DOI10.1063/1.2710197
  2. Albeverio, S., Gesztesy, F., Høegh-Krohn, R., Holden, H., Solvable Models in Quantum Mechanics, AMS Chelsea, Providence (2005). (2005) Zbl1078.81003MR2105735
  3. Albeverio, S., Koshmanenko, V., Kurasov, P., Nizhnik, L., 10.1090/S0002-9939-02-06694-7, Proc. Amer. Math. Soc. 131 (2003), 1443-1452. (2003) MR1949874DOI10.1090/S0002-9939-02-06694-7
  4. Berkolaiko, G., Kuchment, P., Introduction to Quantum Graphs, Mathematical Surveys and Monographs 186 American Mathematical Society, Providence (2013). (2013) MR3013208
  5. Bollé, D., Gesztesy, F., Wilk, S. F. J., A complete treatment of low-energy scattering in one dimension, J. Oper. Theory 13 (1985), 3-32. (1985) Zbl0567.47008MR0768299
  6. Cacciapuoti, C., Exner, P., 10.1088/1751-8113/40/26/F02, J. Phys. A, Math. Theor. 40 (2007), F511--F523. (2007) Zbl1136.81442MR2344437DOI10.1088/1751-8113/40/26/F02
  7. Christiansen, P. L., Arnbak, H. C., Zolotaryuk, A. V., Ermakov, V. N., Gaididei, Y. B., 10.1088/0305-4470/36/27/311, J. Phys. A, Math. Gen. 36 (2003), 7589-7600. (2003) Zbl1047.81567MR2006513DOI10.1088/0305-4470/36/27/311
  8. Exner, P., Manko, S. S., 10.1088/1751-8113/46/34/345202, J. Phys. A, Math. Theor. 46 (2013), Article ID 345202, 17 pages. (2013) Zbl1278.81095MR3101681DOI10.1088/1751-8113/46/34/345202
  9. Golovaty, Yu., 10.1007/s00020-012-2027-z, Integral Equations Oper. Theory 75 (2013), 341-362. (2013) Zbl1270.34198MR3019277DOI10.1007/s00020-012-2027-z
  10. Golovaty, Yu. D., Hryniv, R. O., Norm resolvent convergence of singularly scaled Schrö-dinger operators and δ ' -potentials, Proc. R. Soc. Edinb., Sect. A, Math. 143 (2013), 791-816. (2013) MR3082301
  11. Golovaty, Yu. D., Man'ko, S. S., Solvable models for the Schrödinger operators with δ ' -like potentials, Ukr. Math. Bulletin 6 (2009), 169-203. (2009) MR2768971
  12. Jensen, A., Nenciu, G., 10.1142/S0129055X01000843, Rev. Math. Phys. 13 (2001), 717-754. (2001) Zbl1029.81067MR1841744DOI10.1142/S0129055X01000843
  13. Kurasov, P., Scrinzi, A., Elander, N., 10.1103/PhysRevA.49.5095, Phys. Rev. A 49 (1994), 5095-5097. (1994) DOI10.1103/PhysRevA.49.5095
  14. Man'ko, S. S., 10.1088/1751-8113/43/44/445304, J. Phys. A, Math. Theor. 43 (2010), Article ID 445304, 14 pages. (2010) Zbl1202.81201MR2733833DOI10.1088/1751-8113/43/44/445304
  15. Man'ko, S. S., 10.1063/1.4769425, J. Math. Phys. 53 (2012), Article ID 123521, 13 pages. (2012) Zbl1278.81097MR3405911DOI10.1063/1.4769425
  16. Šeba, P., 10.1016/0034-4877(86)90045-5, Rep. Math. Phys. 24 (1986), 111-120. (1986) Zbl0638.70016MR0932938DOI10.1016/0034-4877(86)90045-5

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.