Existence of entropy solutions for degenerate quasilinear elliptic equations in L 1

Albo Carlos Cavalheiro

Communications in Mathematics (2014)

  • Volume: 22, Issue: 1, page 57-69
  • ISSN: 1804-1388

Abstract

top
In this article, we prove the existence of entropy solutions for the Dirichlet problem ( P ) - div [ ω ( x ) 𝒜 ( x , u , u ) ] = f ( x ) - div ( G ) , in Ω u ( x ) = 0 , on Ω where Ω is a bounded open set of N , N 2 , f L 1 ( Ω ) and G / ω [ L p ' ( Ω , ω ) ] N .

How to cite

top

Cavalheiro, Albo Carlos. "Existence of entropy solutions for degenerate quasilinear elliptic equations in $L^1$." Communications in Mathematics 22.1 (2014): 57-69. <http://eudml.org/doc/261950>.

@article{Cavalheiro2014,
abstract = {In this article, we prove the existence of entropy solutions for the Dirichlet problem \[ (P)\{\left\lbrace \begin\{array\}\{ll\} -\mathrm \{div\} [\{\omega \}(x)\{\mathcal \{A\}\} (x,u,\{\nabla \}u)]=f(x)-\mathrm \{div\} (G),&\text\{in \}\Omega \\ u(x) = 0,&\text\{on \}\{\partial \Omega \} \end\{array\}\right.\} \] where $\Omega $ is a bounded open set of $^N$, $N\ge 2$, $f \in L^1(\Omega )$ and $G/\{\omega \} \in [L^\{p^\{\prime \}\}(\Omega , \omega )]^N$.},
author = {Cavalheiro, Albo Carlos},
journal = {Communications in Mathematics},
keywords = {degenerate elliptic equations; entropy solutions; weighted Sobolev spaces; degenerate elliptic equations; entropy solutions; weighted Sobolev spaces},
language = {eng},
number = {1},
pages = {57-69},
publisher = {University of Ostrava},
title = {Existence of entropy solutions for degenerate quasilinear elliptic equations in $L^1$},
url = {http://eudml.org/doc/261950},
volume = {22},
year = {2014},
}

TY - JOUR
AU - Cavalheiro, Albo Carlos
TI - Existence of entropy solutions for degenerate quasilinear elliptic equations in $L^1$
JO - Communications in Mathematics
PY - 2014
PB - University of Ostrava
VL - 22
IS - 1
SP - 57
EP - 69
AB - In this article, we prove the existence of entropy solutions for the Dirichlet problem \[ (P){\left\lbrace \begin{array}{ll} -\mathrm {div} [{\omega }(x){\mathcal {A}} (x,u,{\nabla }u)]=f(x)-\mathrm {div} (G),&\text{in }\Omega \\ u(x) = 0,&\text{on }{\partial \Omega } \end{array}\right.} \] where $\Omega $ is a bounded open set of $^N$, $N\ge 2$, $f \in L^1(\Omega )$ and $G/{\omega } \in [L^{p^{\prime }}(\Omega , \omega )]^N$.
LA - eng
KW - degenerate elliptic equations; entropy solutions; weighted Sobolev spaces; degenerate elliptic equations; entropy solutions; weighted Sobolev spaces
UR - http://eudml.org/doc/261950
ER -

References

top
  1. Bélinan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vasquez, J.L., An L 1 theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22, 2, 1995, 241-273, (1995) MR1354907
  2. Boccardo, L., Murat, F., Puel, J.P., Existence of bounded solutions for nonlinear elliptic unilateral problems, Ann. Mat. Pura Appl., 152, 1988, 183-196, (1988) MR0980979
  3. Cavalheiro, A.C., The solvability of Dirichlet problem for a class of degenerate elliptic equations with L 1 -data, Applicable Analysis, 85, 8, 2006, 941-961, (2006) Zbl1142.35042MR2250779
  4. Cavalheiro, A.C., Existence of solutions for some degenerate quasilinear elliptic equations, Le Matematiche, LXIII, II, 2008, 101-112, (2008) Zbl1189.35124MR2531653
  5. Piat, V. Chiadò, Cassano, F. Serra, 10.1016/0362-546X(94)90165-1, Nonlinear Anal., 22, 1994, 409-429, (1994) MR1266369DOI10.1016/0362-546X(94)90165-1
  6. Fabes, E., Kenig, C., Serapioni, R., 10.1080/03605308208820218, Comm. PDEs, 7, 1982, 77-116, (1982) Zbl0498.35042MR0643158DOI10.1080/03605308208820218
  7. Folland, G.B., Real Analysis, 1984, Wiley-Interscience, New York, (1984) Zbl0549.28001MR0767633
  8. Garcia-Cuerva, J., Francia, J.L. Rubio de, Weighted Norm Inequalities and Related Topics, 116, 1985, North-Holland Mathematics Studies, (1985) MR0807149
  9. Heinonen, J., Kilpeläinen, T., Martio, O., Nonlinear Potential Theory of Degenerate Elliptic Equations, 1993, Oxford Math. Monographs, Clarendon Press, (1993) Zbl0780.31001MR1207810
  10. Kufner, A., John, O., Fučík, S., Function Spaces, 1977, Noordhoof International Publishing, Leyden, (1977) MR0482102
  11. Muckenhoupt, B., 10.1090/S0002-9947-1972-0293384-6, Trans. Am. Math. Soc., 165, 1972, 207-226, (1972) Zbl0236.26016MR0293384DOI10.1090/S0002-9947-1972-0293384-6
  12. Stein, E., Harmonic Analysis, 1993, Princeton University Press, (1993) Zbl0821.42001MR1232192
  13. Torchinsky, A., Real-Variable Methods in Harmonic Analysis, 1986, Academic Press, San Diego, (1986) Zbl0621.42001MR0869816
  14. Turesson, B.O., Nonlinear Potential Theory and Weighted Sobolev Spaces. Lecture Notes in Mathematics, 1736, 2000, Springer-Verlag, (2000) MR1774162

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.