Existence of entropy solutions for degenerate quasilinear elliptic equations in
Communications in Mathematics (2014)
- Volume: 22, Issue: 1, page 57-69
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topCavalheiro, Albo Carlos. "Existence of entropy solutions for degenerate quasilinear elliptic equations in $L^1$." Communications in Mathematics 22.1 (2014): 57-69. <http://eudml.org/doc/261950>.
@article{Cavalheiro2014,
abstract = {In this article, we prove the existence of entropy solutions for the Dirichlet problem \[ (P)\{\left\lbrace \begin\{array\}\{ll\} -\mathrm \{div\} [\{\omega \}(x)\{\mathcal \{A\}\} (x,u,\{\nabla \}u)]=f(x)-\mathrm \{div\} (G),&\text\{in \}\Omega \\ u(x) = 0,&\text\{on \}\{\partial \Omega \} \end\{array\}\right.\} \]
where $\Omega $ is a bounded open set of $^N$, $N\ge 2$, $f \in L^1(\Omega )$ and $G/\{\omega \} \in [L^\{p^\{\prime \}\}(\Omega , \omega )]^N$.},
author = {Cavalheiro, Albo Carlos},
journal = {Communications in Mathematics},
keywords = {degenerate elliptic equations; entropy solutions; weighted Sobolev spaces; degenerate elliptic equations; entropy solutions; weighted Sobolev spaces},
language = {eng},
number = {1},
pages = {57-69},
publisher = {University of Ostrava},
title = {Existence of entropy solutions for degenerate quasilinear elliptic equations in $L^1$},
url = {http://eudml.org/doc/261950},
volume = {22},
year = {2014},
}
TY - JOUR
AU - Cavalheiro, Albo Carlos
TI - Existence of entropy solutions for degenerate quasilinear elliptic equations in $L^1$
JO - Communications in Mathematics
PY - 2014
PB - University of Ostrava
VL - 22
IS - 1
SP - 57
EP - 69
AB - In this article, we prove the existence of entropy solutions for the Dirichlet problem \[ (P){\left\lbrace \begin{array}{ll} -\mathrm {div} [{\omega }(x){\mathcal {A}} (x,u,{\nabla }u)]=f(x)-\mathrm {div} (G),&\text{in }\Omega \\ u(x) = 0,&\text{on }{\partial \Omega } \end{array}\right.} \]
where $\Omega $ is a bounded open set of $^N$, $N\ge 2$, $f \in L^1(\Omega )$ and $G/{\omega } \in [L^{p^{\prime }}(\Omega , \omega )]^N$.
LA - eng
KW - degenerate elliptic equations; entropy solutions; weighted Sobolev spaces; degenerate elliptic equations; entropy solutions; weighted Sobolev spaces
UR - http://eudml.org/doc/261950
ER -
References
top- Bélinan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vasquez, J.L., An theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22, 2, 1995, 241-273, (1995) MR1354907
- Boccardo, L., Murat, F., Puel, J.P., Existence of bounded solutions for nonlinear elliptic unilateral problems, Ann. Mat. Pura Appl., 152, 1988, 183-196, (1988) MR0980979
- Cavalheiro, A.C., The solvability of Dirichlet problem for a class of degenerate elliptic equations with -data, Applicable Analysis, 85, 8, 2006, 941-961, (2006) Zbl1142.35042MR2250779
- Cavalheiro, A.C., Existence of solutions for some degenerate quasilinear elliptic equations, Le Matematiche, LXIII, II, 2008, 101-112, (2008) Zbl1189.35124MR2531653
- Piat, V. Chiadò, Cassano, F. Serra, 10.1016/0362-546X(94)90165-1, Nonlinear Anal., 22, 1994, 409-429, (1994) MR1266369DOI10.1016/0362-546X(94)90165-1
- Fabes, E., Kenig, C., Serapioni, R., 10.1080/03605308208820218, Comm. PDEs, 7, 1982, 77-116, (1982) Zbl0498.35042MR0643158DOI10.1080/03605308208820218
- Folland, G.B., Real Analysis, 1984, Wiley-Interscience, New York, (1984) Zbl0549.28001MR0767633
- Garcia-Cuerva, J., Francia, J.L. Rubio de, Weighted Norm Inequalities and Related Topics, 116, 1985, North-Holland Mathematics Studies, (1985) MR0807149
- Heinonen, J., Kilpeläinen, T., Martio, O., Nonlinear Potential Theory of Degenerate Elliptic Equations, 1993, Oxford Math. Monographs, Clarendon Press, (1993) Zbl0780.31001MR1207810
- Kufner, A., John, O., Fučík, S., Function Spaces, 1977, Noordhoof International Publishing, Leyden, (1977) MR0482102
- Muckenhoupt, B., 10.1090/S0002-9947-1972-0293384-6, Trans. Am. Math. Soc., 165, 1972, 207-226, (1972) Zbl0236.26016MR0293384DOI10.1090/S0002-9947-1972-0293384-6
- Stein, E., Harmonic Analysis, 1993, Princeton University Press, (1993) Zbl0821.42001MR1232192
- Torchinsky, A., Real-Variable Methods in Harmonic Analysis, 1986, Academic Press, San Diego, (1986) Zbl0621.42001MR0869816
- Turesson, B.O., Nonlinear Potential Theory and Weighted Sobolev Spaces. Lecture Notes in Mathematics, 1736, 2000, Springer-Verlag, (2000) MR1774162
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.