Fixed point theorems of -fuzzy contractions in fuzzy metric spaces endowed with a graph
Communications in Mathematics (2014)
- Volume: 22, Issue: 1, page 1-12
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topShukla, Satish. "Fixed point theorems of $G$-fuzzy contractions in fuzzy metric spaces endowed with a graph." Communications in Mathematics 22.1 (2014): 1-12. <http://eudml.org/doc/261961>.
@article{Shukla2014,
abstract = {Let $(X,M,\ast )$ be a fuzzy metric space endowed with a graph $G$ such that the set $V(G)$ of vertices of $G$ coincides with $X$. Then we define a $G$-fuzzy contraction on $X$ and prove some results concerning the existence and uniqueness of fixed point for such mappings. As a consequence of the main results we derive some extensions of known results from metric into fuzzy metric spaces. Some examples are given which illustrate the results.},
author = {Shukla, Satish},
journal = {Communications in Mathematics},
keywords = {graph; partial order; fuzzy metric space; contraction; fixed point; graph; partial order; fuzzy metric space; contraction; fixed point},
language = {eng},
number = {1},
pages = {1-12},
publisher = {University of Ostrava},
title = {Fixed point theorems of $G$-fuzzy contractions in fuzzy metric spaces endowed with a graph},
url = {http://eudml.org/doc/261961},
volume = {22},
year = {2014},
}
TY - JOUR
AU - Shukla, Satish
TI - Fixed point theorems of $G$-fuzzy contractions in fuzzy metric spaces endowed with a graph
JO - Communications in Mathematics
PY - 2014
PB - University of Ostrava
VL - 22
IS - 1
SP - 1
EP - 12
AB - Let $(X,M,\ast )$ be a fuzzy metric space endowed with a graph $G$ such that the set $V(G)$ of vertices of $G$ coincides with $X$. Then we define a $G$-fuzzy contraction on $X$ and prove some results concerning the existence and uniqueness of fixed point for such mappings. As a consequence of the main results we derive some extensions of known results from metric into fuzzy metric spaces. Some examples are given which illustrate the results.
LA - eng
KW - graph; partial order; fuzzy metric space; contraction; fixed point; graph; partial order; fuzzy metric space; contraction; fixed point
UR - http://eudml.org/doc/261961
ER -
References
top- George, A., Veeramani, P., 10.1016/0165-0114(94)90162-7, Fuzzy Sets and Systems, 64, 1994, 395-399, (1994) Zbl0843.54014MR1289545DOI10.1016/0165-0114(94)90162-7
- George, A., Veeramani, P., 10.1016/S0165-0114(96)00207-2, Fuzzy Sets Systems, 90, 1997, 365-368, (1997) Zbl0917.54010MR1477836DOI10.1016/S0165-0114(96)00207-2
- Petruşel, A., Rus, I.A., 10.1090/S0002-9939-05-07982-7, Proc. Amer. Math. Soc., 134, 2006, 411-418, MR2176009 (2006g:47097). (2006) Zbl1086.47026MR2176009DOI10.1090/S0002-9939-05-07982-7
- Schweizer, B., Sklar, A., 10.2140/pjm.1960.10.313, Pacific J. Math., 10, 1960, 313-334, (1960) Zbl0096.33203MR0115153DOI10.2140/pjm.1960.10.313
- Klement, E.P., Mesiar, R., Pap, E., Triangular Norms, Trends in Logics, vol. 8, 2000, Kluwer Academic Publishers, Dordrecht, Boston, London, (2000) MR1790096
- Bojor, F., Fixed points of Kannan mappings in metric spaces endowed with a graph, An. Şt. Univ. Ovidius Constanţa, 20, 1, 2012, 31-40, DOI: 10.2478/v10309-012-0003-x. (2012) Zbl1274.54116MR2928407
- Kramosil, I., Michálek, J., Fuzzy metrics and statistical metric spaces, Kybernetika, 11, 1975, 336-344, (1975) Zbl0319.54002MR0410633
- Nieto, J.J., Pouso, R.L., Rodríguez-López, R., 10.1090/S0002-9939-07-08729-1, Proc. Amer. Math. Soc., 135, 2007, 2505--2517, MR2302571. (2007) Zbl1126.47045MR2302571DOI10.1090/S0002-9939-07-08729-1
- Nieto, J.J., Rodríguez-López, R., 10.1007/s11083-005-9018-5, Order, 22, 2005, 223-239, (2005) Zbl1095.47013MR2212687DOI10.1007/s11083-005-9018-5
- Nieto, J.J., Rodríguez-López, R., 10.1007/s10114-005-0769-0, Acta Math. Sinica, English Ser., 2007, 2205-2212, (2007) Zbl1140.47045MR2357454DOI10.1007/s10114-005-0769-0
- Jachymski, J., 10.1090/S0002-9939-07-09110-1, Proc. Amer. Math. Soc., 136, 2008, 1359-1373, (2008) Zbl1139.47040MR2367109DOI10.1090/S0002-9939-07-09110-1
- Zadeh, L.A., 10.1016/S0019-9958(65)90241-X, Information and Control, 89, 1965, 338-353, (1965) Zbl0139.24606MR0219427DOI10.1016/S0019-9958(65)90241-X
- Grabiec, M., 10.1016/0165-0114(88)90064-4, Fuzzy Sets and Systems, 27, 1988, 385-389, (1988) Zbl0664.54032MR0956385DOI10.1016/0165-0114(88)90064-4
- Hadžić, O., Pap, E., Fixed Point Theory in Probabilistic Metric Spaces. Mathematics and its Applications. Vol. 536, 2001, Kluwer Academic Publishers, Dordrecht, Boston, London, (2001) MR1896451
- Gregori, V., Sapena, A., 10.1016/S0165-0114(00)00088-9, Fuzzy Sets and Systems, 125, 2002, 245-252, (2002) Zbl0995.54046MR1880341DOI10.1016/S0165-0114(00)00088-9
- Kirk, W.A., Srinavasan, P.S., Veeramani, P., Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory, 4, 2003, 79-89, (2003) MR2031823
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.