A note on the number of -Diophantine quadruples
Communications in Mathematics (2014)
- Volume: 22, Issue: 1, page 49-55
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topLuca, Florian, and Ziegler, Volker. "A note on the number of $S$-Diophantine quadruples." Communications in Mathematics 22.1 (2014): 49-55. <http://eudml.org/doc/261965>.
@article{Luca2014,
abstract = {Let $(a_1,\dots , a_m)$ be an $m$-tuple of positive, pairwise distinct integers. If for all $1\le i< j \le m$ the prime divisors of $a_ia_j+1$ come from the same fixed set $S$, then we call the $m$-tuple $S$-Diophantine. In this note we estimate the number of $S$-Diophantine quadruples in terms of $|S|=r$.},
author = {Luca, Florian, Ziegler, Volker},
journal = {Communications in Mathematics},
keywords = {Diophantine equations; $S$-unit equations; $S$-Diophantine tuples; Diophantine equations; -unit equations; -Diophantine tuples},
language = {eng},
number = {1},
pages = {49-55},
publisher = {University of Ostrava},
title = {A note on the number of $S$-Diophantine quadruples},
url = {http://eudml.org/doc/261965},
volume = {22},
year = {2014},
}
TY - JOUR
AU - Luca, Florian
AU - Ziegler, Volker
TI - A note on the number of $S$-Diophantine quadruples
JO - Communications in Mathematics
PY - 2014
PB - University of Ostrava
VL - 22
IS - 1
SP - 49
EP - 55
AB - Let $(a_1,\dots , a_m)$ be an $m$-tuple of positive, pairwise distinct integers. If for all $1\le i< j \le m$ the prime divisors of $a_ia_j+1$ come from the same fixed set $S$, then we call the $m$-tuple $S$-Diophantine. In this note we estimate the number of $S$-Diophantine quadruples in terms of $|S|=r$.
LA - eng
KW - Diophantine equations; $S$-unit equations; $S$-Diophantine tuples; Diophantine equations; -unit equations; -Diophantine tuples
UR - http://eudml.org/doc/261965
ER -
References
top- Amoroso, F., Viada, E., 10.1215/00127094-2009-056, Duke Math. J., 150, 3, 2009, 407-442, (2009) Zbl1234.11081MR2582101DOI10.1215/00127094-2009-056
- Bugeaud, Y., Luca, F., 10.4064/aa114-3-3, Acta Arith., 114, 3, 2004, 275-294, (2004) Zbl1122.11060MR2071083DOI10.4064/aa114-3-3
- Corvaja, P., Zannier, U., 10.1090/S0002-9939-02-06771-0, Proc. Amer. Math. Soc., 131, 6, 2003, 1705-1709, (electronic). (2003) Zbl1077.11052MR1955256DOI10.1090/S0002-9939-02-06771-0
- Erdős, P., Turan, P., 10.2307/2301909, Amer. Math. Monthly, 41, 10, 1934, 608-611, (1934) Zbl0010.29401MR1523239DOI10.2307/2301909
- Evertse, J.-H., 10.1007/BF01388644, Invent. Math., 75, 3, 1984, 561-584, (1984) MR0735341DOI10.1007/BF01388644
- Evertse, J.-H., Ferretti, R. G., 10.4007/annals.2013.177.2.4, Ann. of Math. (2), 177, 2, 2013, 513-590, (2013) MR3010806DOI10.4007/annals.2013.177.2.4
- Evertse, J.-H., Schlickewei, H. P., Schmidt, W. M., 10.2307/3062133, Ann. of Math. (2), 155, 3, 2002, 807-836, (2002) Zbl1026.11038MR1923966DOI10.2307/3062133
- Győry, K., Sárközy, A., Stewart, C. L., On the number of prime factors of integers of the form , Acta Arith., 74, 4, 1996, 365-385, (1996) Zbl0857.11047MR1378230
- Hernández, S., Luca, F., On the largest prime factor of , Bol. Soc. Mat. Mexicana (3), 9, 2, 2003, 235-244, (2003) Zbl1108.11030MR2029272
- Luca, F., 10.1007/s00605-005-0303-6, Monatsh. Math., 146, 3, 2005, 239-256, (2005) MR2184226DOI10.1007/s00605-005-0303-6
- Mihăilescu, P., Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., 572, 2004, 167-195, (2004) Zbl1067.11017MR2076124
- Sárközy, A., Stewart, C. L., On divisors of sums of integers. II, J. Reine Angew. Math., 365, 1986, 171-191, (1986) Zbl0578.10045MR0826157
- Sárközy, A., Stewart, C. L., 10.2140/pjm.1994.166.373, Pacific J. Math., 166, 2, 1994, 373-384, (1994) Zbl0841.11049MR1313461DOI10.2140/pjm.1994.166.373
- Sárközy, A., Stewart, C. L., On prime factors of integers of the form , Publ. Math. Debrecen, 56, 3--4, 2000, 559-573, Dedicated to Professor Kálmán Győry on the occasion of his 60th birthday.. (2000) Zbl0960.11045MR1766000
- Stewart, C. L., Tijdeman, R., On the greatest prime factor of , Acta Arith., 79, 1, 1997, 93-101, (1997) Zbl0869.11072MR1438120
- Szalay, L., Ziegler, V., -diophantine quadruples with , (in preperation).
- Szalay, L., Ziegler, V., 10.5486/PMD.2013.5521, Publ. Math. Debrecen, 83, 1--2, 2013, 97-121, (2013) Zbl1274.11095MR3081229DOI10.5486/PMD.2013.5521
- Szalay, L., Ziegler, V., -diophantine quadruples with two primes congruent 3 modulo 4, Integers, 13, 2013, Paper No. A80, 9pp.. (2013) MR3167927
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.