A note on the number of S -Diophantine quadruples

Florian Luca; Volker Ziegler

Communications in Mathematics (2014)

  • Volume: 22, Issue: 1, page 49-55
  • ISSN: 1804-1388

Abstract

top
Let ( a 1 , , a m ) be an m -tuple of positive, pairwise distinct integers. If for all 1 i < j m the prime divisors of a i a j + 1 come from the same fixed set S , then we call the m -tuple S -Diophantine. In this note we estimate the number of S -Diophantine quadruples in terms of | S | = r .

How to cite

top

Luca, Florian, and Ziegler, Volker. "A note on the number of $S$-Diophantine quadruples." Communications in Mathematics 22.1 (2014): 49-55. <http://eudml.org/doc/261965>.

@article{Luca2014,
abstract = {Let $(a_1,\dots , a_m)$ be an $m$-tuple of positive, pairwise distinct integers. If for all $1\le i< j \le m$ the prime divisors of $a_ia_j+1$ come from the same fixed set $S$, then we call the $m$-tuple $S$-Diophantine. In this note we estimate the number of $S$-Diophantine quadruples in terms of $|S|=r$.},
author = {Luca, Florian, Ziegler, Volker},
journal = {Communications in Mathematics},
keywords = {Diophantine equations; $S$-unit equations; $S$-Diophantine tuples; Diophantine equations; -unit equations; -Diophantine tuples},
language = {eng},
number = {1},
pages = {49-55},
publisher = {University of Ostrava},
title = {A note on the number of $S$-Diophantine quadruples},
url = {http://eudml.org/doc/261965},
volume = {22},
year = {2014},
}

TY - JOUR
AU - Luca, Florian
AU - Ziegler, Volker
TI - A note on the number of $S$-Diophantine quadruples
JO - Communications in Mathematics
PY - 2014
PB - University of Ostrava
VL - 22
IS - 1
SP - 49
EP - 55
AB - Let $(a_1,\dots , a_m)$ be an $m$-tuple of positive, pairwise distinct integers. If for all $1\le i< j \le m$ the prime divisors of $a_ia_j+1$ come from the same fixed set $S$, then we call the $m$-tuple $S$-Diophantine. In this note we estimate the number of $S$-Diophantine quadruples in terms of $|S|=r$.
LA - eng
KW - Diophantine equations; $S$-unit equations; $S$-Diophantine tuples; Diophantine equations; -unit equations; -Diophantine tuples
UR - http://eudml.org/doc/261965
ER -

References

top
  1. Amoroso, F., Viada, E., 10.1215/00127094-2009-056, Duke Math. J., 150, 3, 2009, 407-442, (2009) Zbl1234.11081MR2582101DOI10.1215/00127094-2009-056
  2. Bugeaud, Y., Luca, F., 10.4064/aa114-3-3, Acta Arith., 114, 3, 2004, 275-294, (2004) Zbl1122.11060MR2071083DOI10.4064/aa114-3-3
  3. Corvaja, P., Zannier, U., 10.1090/S0002-9939-02-06771-0, Proc. Amer. Math. Soc., 131, 6, 2003, 1705-1709, (electronic). (2003) Zbl1077.11052MR1955256DOI10.1090/S0002-9939-02-06771-0
  4. Erdős, P., Turan, P., 10.2307/2301909, Amer. Math. Monthly, 41, 10, 1934, 608-611, (1934) Zbl0010.29401MR1523239DOI10.2307/2301909
  5. Evertse, J.-H., 10.1007/BF01388644, Invent. Math., 75, 3, 1984, 561-584, (1984) MR0735341DOI10.1007/BF01388644
  6. Evertse, J.-H., Ferretti, R. G., 10.4007/annals.2013.177.2.4, Ann. of Math. (2), 177, 2, 2013, 513-590, (2013) MR3010806DOI10.4007/annals.2013.177.2.4
  7. Evertse, J.-H., Schlickewei, H. P., Schmidt, W. M., 10.2307/3062133, Ann. of Math. (2), 155, 3, 2002, 807-836, (2002) Zbl1026.11038MR1923966DOI10.2307/3062133
  8. Győry, K., Sárközy, A., Stewart, C. L., On the number of prime factors of integers of the form a b + 1 , Acta Arith., 74, 4, 1996, 365-385, (1996) Zbl0857.11047MR1378230
  9. Hernández, S., Luca, F., On the largest prime factor of ( a b + 1 ) ( a c + 1 ) ( b c + 1 ) , Bol. Soc. Mat. Mexicana (3), 9, 2, 2003, 235-244, (2003) Zbl1108.11030MR2029272
  10. Luca, F., 10.1007/s00605-005-0303-6, Monatsh. Math., 146, 3, 2005, 239-256, (2005) MR2184226DOI10.1007/s00605-005-0303-6
  11. Mihăilescu, P., Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., 572, 2004, 167-195, (2004) Zbl1067.11017MR2076124
  12. Sárközy, A., Stewart, C. L., On divisors of sums of integers. II, J. Reine Angew. Math., 365, 1986, 171-191, (1986) Zbl0578.10045MR0826157
  13. Sárközy, A., Stewart, C. L., 10.2140/pjm.1994.166.373, Pacific J. Math., 166, 2, 1994, 373-384, (1994) Zbl0841.11049MR1313461DOI10.2140/pjm.1994.166.373
  14. Sárközy, A., Stewart, C. L., On prime factors of integers of the form a b + 1 , Publ. Math. Debrecen, 56, 3--4, 2000, 559-573, Dedicated to Professor Kálmán Győry on the occasion of his 60th birthday.. (2000) Zbl0960.11045MR1766000
  15. Stewart, C. L., Tijdeman, R., On the greatest prime factor of ( a b + 1 ) ( a c + 1 ) ( b c + 1 ) , Acta Arith., 79, 1, 1997, 93-101, (1997) Zbl0869.11072MR1438120
  16. Szalay, L., Ziegler, V., S -diophantine quadruples with S = 2 , q , (in preperation). 
  17. Szalay, L., Ziegler, V., 10.5486/PMD.2013.5521, Publ. Math. Debrecen, 83, 1--2, 2013, 97-121, (2013) Zbl1274.11095MR3081229DOI10.5486/PMD.2013.5521
  18. Szalay, L., Ziegler, V., S -diophantine quadruples with two primes congruent 3 modulo 4, Integers, 13, 2013, Paper No. A80, 9pp.. (2013) MR3167927

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.