Ulam Stabilities for Partial Impulsive Fractional Differential Equations
Saïd Abbas; Mouffak Benchohra; Juan J. Nieto
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2014)
- Volume: 53, Issue: 1, page 5-17
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topAbbas, Saïd, Benchohra, Mouffak, and Nieto, Juan J.. "Ulam Stabilities for Partial Impulsive Fractional Differential Equations." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 53.1 (2014): 5-17. <http://eudml.org/doc/261969>.
@article{Abbas2014,
abstract = {In this paper we investigate the existence of solutions for the initial value problems (IVP for short), for a class of implicit impulsive hyperbolic differential equations by using the lower and upper solutions method combined with Schauder’s fixed point theorem.},
author = {Abbas, Saïd, Benchohra, Mouffak, Nieto, Juan J.},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {fractional differential equations; impulse; Caputo fractional order derivative; left-sided mixed Riemann–Liouville integral; Darboux problem; Ulam stability; fractional differential equations; impulse; Caputo fractional order derivative; left-sided mixed Riemann-Liouville integral; Darboux problem; Ulam stability},
language = {eng},
number = {1},
pages = {5-17},
publisher = {Palacký University Olomouc},
title = {Ulam Stabilities for Partial Impulsive Fractional Differential Equations},
url = {http://eudml.org/doc/261969},
volume = {53},
year = {2014},
}
TY - JOUR
AU - Abbas, Saïd
AU - Benchohra, Mouffak
AU - Nieto, Juan J.
TI - Ulam Stabilities for Partial Impulsive Fractional Differential Equations
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2014
PB - Palacký University Olomouc
VL - 53
IS - 1
SP - 5
EP - 17
AB - In this paper we investigate the existence of solutions for the initial value problems (IVP for short), for a class of implicit impulsive hyperbolic differential equations by using the lower and upper solutions method combined with Schauder’s fixed point theorem.
LA - eng
KW - fractional differential equations; impulse; Caputo fractional order derivative; left-sided mixed Riemann–Liouville integral; Darboux problem; Ulam stability; fractional differential equations; impulse; Caputo fractional order derivative; left-sided mixed Riemann-Liouville integral; Darboux problem; Ulam stability
UR - http://eudml.org/doc/261969
ER -
References
top- Abbas, S., Baleanu, D., Benchohra, M., 10.1186/1687-1847-2012-62, Adv. Difference Equ. 2012, 62 doi:10.1186/1687-1847-2012-62 (2012), 1–10, online. (2012) Zbl1302.35392MR2958362DOI10.1186/1687-1847-2012-62
- Abbas, S., Benchohra, M., Darboux problem for perturbed partial differential equations of fractional order with finite delay, Nonlinear Anal. Hybrid Syst. 3 (2009), 597–604. (2009) Zbl1219.35345MR2561676
- Abbas, S., Benchohra, M., Fractional order partial hyperbolic differential equations involving Caputo’s derivative, Stud. Univ. Babeş-Bolyai Math. 57, 4 (2012), 469–479. (2012) Zbl1289.26008MR3034096
- Abbas, S., Benchohra, M., Upper and lower solutions method for Darboux problem for fractional order implicit impulsive partial hyperbolic differential equations, Acta Univ. Palacki. Olomuc., Math. 51, 2 (2012), 5–18. (2012) Zbl1302.35393MR3058869
- Abbas, S., Benchohra, M., Cabada, A., Partial neutral functional integro-differential equations of fractional order with delay, Bound. Value Prob. 2012, 128 (2012), 1–15. (2012) Zbl1278.26006MR3016041
- Abbas, S., Benchohra, M., Górniewicz, L., Existence theory for impulsive partial hyperbolic functional differential equations involving the Caputo fractional derivative, Sci. Math. Jpn. e-2010 (2010), 271–282, online. (2010) Zbl1200.26004MR2666846
- Abbas, S., Benchohra, M., Henderson, J., Asymptotic attractive nonlinear fractional order Riemann-Liouville integral equations in Banach algebras, Nonlinear Studies 20, 1 (2013), 1–10. (2013) Zbl1305.45005MR3058403
- Abbas, S., Benchohra, M., N’Guérékata, G. M., Topics in Fractional Differential Equations, Developments in Mathematics 27, Springer, New York, 2012. (2012) Zbl1273.35001MR2962045
- Abbas, S., Benchohra, M., Vityuk, A. N., 10.2478/s13540-012-0012-5, Fract. Calc. Appl. Anal. 15, 2 (2012), 168–182. (2012) Zbl1302.35395MR2897771DOI10.2478/s13540-012-0012-5
- Abbas, S., Benchohra, M., Zhou, Y., Darboux problem for tractional order neutral functional partial hyperbolic differential equations, Int. J. Dynam. Syst. Differ. Equa. 2 (2009), 301–312. (2009) MR2583101
- Ahmad, B., Nieto, J. J., Riemann-Liouville fractional differential equations with fractional boundary conditions, Fixed Point Theory 13 (2012), 329–336. (2012) Zbl1315.34006MR3024321
- Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J. J., Fractional Calculus Models and Numerical Methods, World Scientific Publishing, New York, 2012. (2012) Zbl1248.26011MR2894576
- Benchohra, M., Graef, J. R., Hamani, S., 10.1080/00036810802307579, Appl. Anal. 87, 7 (2008), 851–863. (2008) MR2458962DOI10.1080/00036810802307579
- Bota-Boriceanu, M. F., Petrusel, A., Ulam–Hyers stability for operatorial equations and inclusions, Analele Univ. I. Cuza Iasi 57 (2011), 65–74. (2011) MR2933569
- Cabada, A., Staněk, S., 10.1016/j.amc.2012.07.062, Appl. Math. Comput. 219 (2012), 1383–1390. (2012) Zbl1296.34013MR2983850DOI10.1016/j.amc.2012.07.062
- Castro, L. P., Ramos, A., 10.15352/bjma/1240336421, Banach J. Math. Anal. 3 (2009), 36–43. (2009) MR2461744DOI10.15352/bjma/1240336421
- Henry, D., Geometric theory of Semilinear Parabolic Partial Differential Equations, Springer-Verlag, Berlin–New York, 1989. (1989)
- Hilfer, R., R., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. (2000) Zbl0998.26002MR1890104
- Hyers, D. H., 10.1073/pnas.27.4.222, Proc. Nat. Acad. Sci. 27 (1941), 222–224. (1941) Zbl0061.26403MR0004076DOI10.1073/pnas.27.4.222
- Hyers, D. H., Isac, G., Rassias, Th. M., Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998. (1998) Zbl0907.39025MR1639801
- Jung, S.-M., Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, 2011. (2011) Zbl1221.39038MR2790773
- Jung, S.-M., A fixed point approach to the stability of a Volterra integral equation, Fixed Point Theory Appl. 2007, Article ID 57064 (2007), 1–9. (2007) Zbl1155.45005MR2318689
- Kilbas, A. A., Marzan, S. A., 10.1007/s10625-005-0137-y, Differential Equations 41 (2005), 84–89. (2005) Zbl1160.34301MR2213269DOI10.1007/s10625-005-0137-y
- Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204, Elsevier Science B.V., Amsterdam, 2006. (2006) Zbl1092.45003MR2218073
- Ortigueira, M. D., 10.1007/978-94-007-0747-4, Lecture Notes in Electrical Engineering 84, Springer, Dordrecht, 2011. (2011) Zbl1251.26005MR2768178DOI10.1007/978-94-007-0747-4
- Petru, T. P., Bota, M.-F., Ulam-Hyers stabillity of operational inclusions in complete gauge spaces, Fixed Point Theory 13 (2012), 641–650. (2012) MR3024346
- Petru, T. P., Petrusel, A., Yao, J.-C., Ulam-Hyers stability for operatorial equations and inclusions via nonself operators, Taiwanese J. Math. 15 (2011), 2169–2193. (2011) Zbl1246.54049MR2880400
- Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, 1999. (1999) Zbl0924.34008MR1658022
- Rassias, Th. M., 10.1090/S0002-9939-1978-0507327-1, Proc. Amer. Math. Soc. 72 (1978), 297–300. (1978) MR0507327DOI10.1090/S0002-9939-1978-0507327-1
- Rus, I. A., Ulam stability of ordinary differential equations, Studia Univ. Babes-Bolyai, Math. 54, 4 (2009), 125–133. (2009) Zbl1224.34165MR2602351
- Rus, I. A., Remarks on Ulam stability of the operatorial equations, Fixed Point Theory 10 (2009), 305–320. (2009) Zbl1204.47071MR2569004
- Staněk, S., 10.1016/j.amc.2012.09.008, Appl. Math. Comput. 219 (2012), 2361–2370. (2012) Zbl1308.34104MR2988118DOI10.1016/j.amc.2012.09.008
- Tarasov, V. E., Fractional Dynamics. Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg, 2010. (2010) Zbl1214.81004MR2796453
- Ulam, S. M., A Collection of Mathematical Problems, Interscience Publishers, New York, 1968. (1968) MR0120127
- Vityuk, A. N., Golushkov, A. V., 10.1007/s11072-005-0015-9, Nonlinear Oscil. 7, 3 (2004), 318–325. (2004) MR2151816DOI10.1007/s11072-005-0015-9
- Wang, J., Fečkan, M., Zhou, Y, 10.1016/j.jmaa.2012.05.040, J. Math. Anal. Appl. 395, 1 (2012), 258–264. (2012) Zbl1254.34022MR2943620DOI10.1016/j.jmaa.2012.05.040
- Wang, J., Fečkan, M., Zhou, Y, On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equ. 8, 4 (2011), 345–361. (2011) Zbl1264.34014MR2901608
- Wang, J., Lv, L., Zhou, Y., 10.14232/ejqtde.2011.1.63, E. J. Qual. Theory Diff. Equ. 63 (2011), 1–10. (2011) MR2832769DOI10.14232/ejqtde.2011.1.63
- Wang, J., Lv, L., Zhou, Y., 10.1016/j.cnsns.2011.09.030, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 2530–2538. (2012) Zbl1252.35276MR2877697DOI10.1016/j.cnsns.2011.09.030
- Wang, J., Zhou, Y., 10.1016/j.aml.2011.10.009, Appl. Math. Lett. 25, 4 (2012), 723–728. (2012) Zbl1246.34012MR2875807DOI10.1016/j.aml.2011.10.009
- Wang, J., Zhou, Y., Fečkan, M., 10.1016/j.camwa.2012.02.021, Comput. Math. Appl. 64 (2012), 3389–3405. (2012) Zbl1268.34033MR2989367DOI10.1016/j.camwa.2012.02.021
- Wei, W., Li, X., Li, X., 10.1016/j.camwa.2012.02.057, Comput. Math. Appl. 64 (2012), 3468–3476. (2012) Zbl1268.45007MR2989374DOI10.1016/j.camwa.2012.02.057
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.