Ulam Stabilities for Partial Impulsive Fractional Differential Equations
Saïd Abbas; Mouffak Benchohra; Juan J. Nieto
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2014)
- Volume: 53, Issue: 1, page 5-17
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topReferences
top- Abbas, S., Baleanu, D., Benchohra, M., 10.1186/1687-1847-2012-62, Adv. Difference Equ. 2012, 62 doi:10.1186/1687-1847-2012-62 (2012), 1–10, online. (2012) Zbl1302.35392MR2958362DOI10.1186/1687-1847-2012-62
- Abbas, S., Benchohra, M., Darboux problem for perturbed partial differential equations of fractional order with finite delay, Nonlinear Anal. Hybrid Syst. 3 (2009), 597–604. (2009) Zbl1219.35345MR2561676
- Abbas, S., Benchohra, M., Fractional order partial hyperbolic differential equations involving Caputo’s derivative, Stud. Univ. Babeş-Bolyai Math. 57, 4 (2012), 469–479. (2012) Zbl1289.26008MR3034096
- Abbas, S., Benchohra, M., Upper and lower solutions method for Darboux problem for fractional order implicit impulsive partial hyperbolic differential equations, Acta Univ. Palacki. Olomuc., Math. 51, 2 (2012), 5–18. (2012) Zbl1302.35393MR3058869
- Abbas, S., Benchohra, M., Cabada, A., Partial neutral functional integro-differential equations of fractional order with delay, Bound. Value Prob. 2012, 128 (2012), 1–15. (2012) Zbl1278.26006MR3016041
- Abbas, S., Benchohra, M., Górniewicz, L., Existence theory for impulsive partial hyperbolic functional differential equations involving the Caputo fractional derivative, Sci. Math. Jpn. e-2010 (2010), 271–282, online. (2010) Zbl1200.26004MR2666846
- Abbas, S., Benchohra, M., Henderson, J., Asymptotic attractive nonlinear fractional order Riemann-Liouville integral equations in Banach algebras, Nonlinear Studies 20, 1 (2013), 1–10. (2013) Zbl1305.45005MR3058403
- Abbas, S., Benchohra, M., N’Guérékata, G. M., Topics in Fractional Differential Equations, Developments in Mathematics 27, Springer, New York, 2012. (2012) Zbl1273.35001MR2962045
- Abbas, S., Benchohra, M., Vityuk, A. N., 10.2478/s13540-012-0012-5, Fract. Calc. Appl. Anal. 15, 2 (2012), 168–182. (2012) Zbl1302.35395MR2897771DOI10.2478/s13540-012-0012-5
- Abbas, S., Benchohra, M., Zhou, Y., Darboux problem for tractional order neutral functional partial hyperbolic differential equations, Int. J. Dynam. Syst. Differ. Equa. 2 (2009), 301–312. (2009) MR2583101
- Ahmad, B., Nieto, J. J., Riemann-Liouville fractional differential equations with fractional boundary conditions, Fixed Point Theory 13 (2012), 329–336. (2012) Zbl1315.34006MR3024321
- Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J. J., Fractional Calculus Models and Numerical Methods, World Scientific Publishing, New York, 2012. (2012) Zbl1248.26011MR2894576
- Benchohra, M., Graef, J. R., Hamani, S., 10.1080/00036810802307579, Appl. Anal. 87, 7 (2008), 851–863. (2008) MR2458962DOI10.1080/00036810802307579
- Bota-Boriceanu, M. F., Petrusel, A., Ulam–Hyers stability for operatorial equations and inclusions, Analele Univ. I. Cuza Iasi 57 (2011), 65–74. (2011) MR2933569
- Cabada, A., Staněk, S., 10.1016/j.amc.2012.07.062, Appl. Math. Comput. 219 (2012), 1383–1390. (2012) Zbl1296.34013MR2983850DOI10.1016/j.amc.2012.07.062
- Castro, L. P., Ramos, A., 10.15352/bjma/1240336421, Banach J. Math. Anal. 3 (2009), 36–43. (2009) MR2461744DOI10.15352/bjma/1240336421
- Henry, D., Geometric theory of Semilinear Parabolic Partial Differential Equations, Springer-Verlag, Berlin–New York, 1989. (1989)
- Hilfer, R., R., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. (2000) Zbl0998.26002MR1890104
- Hyers, D. H., 10.1073/pnas.27.4.222, Proc. Nat. Acad. Sci. 27 (1941), 222–224. (1941) Zbl0061.26403MR0004076DOI10.1073/pnas.27.4.222
- Hyers, D. H., Isac, G., Rassias, Th. M., Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998. (1998) Zbl0907.39025MR1639801
- Jung, S.-M., Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, 2011. (2011) Zbl1221.39038MR2790773
- Jung, S.-M., A fixed point approach to the stability of a Volterra integral equation, Fixed Point Theory Appl. 2007, Article ID 57064 (2007), 1–9. (2007) Zbl1155.45005MR2318689
- Kilbas, A. A., Marzan, S. A., 10.1007/s10625-005-0137-y, Differential Equations 41 (2005), 84–89. (2005) Zbl1160.34301MR2213269DOI10.1007/s10625-005-0137-y
- Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204, Elsevier Science B.V., Amsterdam, 2006. (2006) Zbl1092.45003MR2218073
- Ortigueira, M. D., 10.1007/978-94-007-0747-4, Lecture Notes in Electrical Engineering 84, Springer, Dordrecht, 2011. (2011) Zbl1251.26005MR2768178DOI10.1007/978-94-007-0747-4
- Petru, T. P., Bota, M.-F., Ulam-Hyers stabillity of operational inclusions in complete gauge spaces, Fixed Point Theory 13 (2012), 641–650. (2012) MR3024346
- Petru, T. P., Petrusel, A., Yao, J.-C., Ulam-Hyers stability for operatorial equations and inclusions via nonself operators, Taiwanese J. Math. 15 (2011), 2169–2193. (2011) Zbl1246.54049MR2880400
- Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, 1999. (1999) Zbl0924.34008MR1658022
- Rassias, Th. M., 10.1090/S0002-9939-1978-0507327-1, Proc. Amer. Math. Soc. 72 (1978), 297–300. (1978) MR0507327DOI10.1090/S0002-9939-1978-0507327-1
- Rus, I. A., Ulam stability of ordinary differential equations, Studia Univ. Babes-Bolyai, Math. 54, 4 (2009), 125–133. (2009) Zbl1224.34165MR2602351
- Rus, I. A., Remarks on Ulam stability of the operatorial equations, Fixed Point Theory 10 (2009), 305–320. (2009) Zbl1204.47071MR2569004
- Staněk, S., 10.1016/j.amc.2012.09.008, Appl. Math. Comput. 219 (2012), 2361–2370. (2012) Zbl1308.34104MR2988118DOI10.1016/j.amc.2012.09.008
- Tarasov, V. E., Fractional Dynamics. Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg, 2010. (2010) Zbl1214.81004MR2796453
- Ulam, S. M., A Collection of Mathematical Problems, Interscience Publishers, New York, 1968. (1968) MR0120127
- Vityuk, A. N., Golushkov, A. V., 10.1007/s11072-005-0015-9, Nonlinear Oscil. 7, 3 (2004), 318–325. (2004) MR2151816DOI10.1007/s11072-005-0015-9
- Wang, J., Fečkan, M., Zhou, Y, 10.1016/j.jmaa.2012.05.040, J. Math. Anal. Appl. 395, 1 (2012), 258–264. (2012) Zbl1254.34022MR2943620DOI10.1016/j.jmaa.2012.05.040
- Wang, J., Fečkan, M., Zhou, Y, On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equ. 8, 4 (2011), 345–361. (2011) Zbl1264.34014MR2901608
- Wang, J., Lv, L., Zhou, Y., 10.14232/ejqtde.2011.1.63, E. J. Qual. Theory Diff. Equ. 63 (2011), 1–10. (2011) MR2832769DOI10.14232/ejqtde.2011.1.63
- Wang, J., Lv, L., Zhou, Y., 10.1016/j.cnsns.2011.09.030, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 2530–2538. (2012) Zbl1252.35276MR2877697DOI10.1016/j.cnsns.2011.09.030
- Wang, J., Zhou, Y., 10.1016/j.aml.2011.10.009, Appl. Math. Lett. 25, 4 (2012), 723–728. (2012) Zbl1246.34012MR2875807DOI10.1016/j.aml.2011.10.009
- Wang, J., Zhou, Y., Fečkan, M., 10.1016/j.camwa.2012.02.021, Comput. Math. Appl. 64 (2012), 3389–3405. (2012) Zbl1268.34033MR2989367DOI10.1016/j.camwa.2012.02.021
- Wei, W., Li, X., Li, X., 10.1016/j.camwa.2012.02.057, Comput. Math. Appl. 64 (2012), 3468–3476. (2012) Zbl1268.45007MR2989374DOI10.1016/j.camwa.2012.02.057