Ulam Stabilities for Partial Impulsive Fractional Differential Equations

Saïd Abbas; Mouffak Benchohra; Juan J. Nieto

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2014)

  • Volume: 53, Issue: 1, page 5-17
  • ISSN: 0231-9721

Abstract

top
In this paper we investigate the existence of solutions for the initial value problems (IVP for short), for a class of implicit impulsive hyperbolic differential equations by using the lower and upper solutions method combined with Schauder’s fixed point theorem.

How to cite

top

Abbas, Saïd, Benchohra, Mouffak, and Nieto, Juan J.. "Ulam Stabilities for Partial Impulsive Fractional Differential Equations." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 53.1 (2014): 5-17. <http://eudml.org/doc/261969>.

@article{Abbas2014,
abstract = {In this paper we investigate the existence of solutions for the initial value problems (IVP for short), for a class of implicit impulsive hyperbolic differential equations by using the lower and upper solutions method combined with Schauder’s fixed point theorem.},
author = {Abbas, Saïd, Benchohra, Mouffak, Nieto, Juan J.},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {fractional differential equations; impulse; Caputo fractional order derivative; left-sided mixed Riemann–Liouville integral; Darboux problem; Ulam stability; fractional differential equations; impulse; Caputo fractional order derivative; left-sided mixed Riemann-Liouville integral; Darboux problem; Ulam stability},
language = {eng},
number = {1},
pages = {5-17},
publisher = {Palacký University Olomouc},
title = {Ulam Stabilities for Partial Impulsive Fractional Differential Equations},
url = {http://eudml.org/doc/261969},
volume = {53},
year = {2014},
}

TY - JOUR
AU - Abbas, Saïd
AU - Benchohra, Mouffak
AU - Nieto, Juan J.
TI - Ulam Stabilities for Partial Impulsive Fractional Differential Equations
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2014
PB - Palacký University Olomouc
VL - 53
IS - 1
SP - 5
EP - 17
AB - In this paper we investigate the existence of solutions for the initial value problems (IVP for short), for a class of implicit impulsive hyperbolic differential equations by using the lower and upper solutions method combined with Schauder’s fixed point theorem.
LA - eng
KW - fractional differential equations; impulse; Caputo fractional order derivative; left-sided mixed Riemann–Liouville integral; Darboux problem; Ulam stability; fractional differential equations; impulse; Caputo fractional order derivative; left-sided mixed Riemann-Liouville integral; Darboux problem; Ulam stability
UR - http://eudml.org/doc/261969
ER -

References

top
  1. Abbas, S., Baleanu, D., Benchohra, M., 10.1186/1687-1847-2012-62, Adv. Difference Equ. 2012, 62 doi:10.1186/1687-1847-2012-62 (2012), 1–10, online. (2012) Zbl1302.35392MR2958362DOI10.1186/1687-1847-2012-62
  2. Abbas, S., Benchohra, M., Darboux problem for perturbed partial differential equations of fractional order with finite delay, Nonlinear Anal. Hybrid Syst. 3 (2009), 597–604. (2009) Zbl1219.35345MR2561676
  3. Abbas, S., Benchohra, M., Fractional order partial hyperbolic differential equations involving Caputo’s derivative, Stud. Univ. Babeş-Bolyai Math. 57, 4 (2012), 469–479. (2012) Zbl1289.26008MR3034096
  4. Abbas, S., Benchohra, M., Upper and lower solutions method for Darboux problem for fractional order implicit impulsive partial hyperbolic differential equations, Acta Univ. Palacki. Olomuc., Math. 51, 2 (2012), 5–18. (2012) Zbl1302.35393MR3058869
  5. Abbas, S., Benchohra, M., Cabada, A., Partial neutral functional integro-differential equations of fractional order with delay, Bound. Value Prob. 2012, 128 (2012), 1–15. (2012) Zbl1278.26006MR3016041
  6. Abbas, S., Benchohra, M., Górniewicz, L., Existence theory for impulsive partial hyperbolic functional differential equations involving the Caputo fractional derivative, Sci. Math. Jpn. e-2010 (2010), 271–282, online. (2010) Zbl1200.26004MR2666846
  7. Abbas, S., Benchohra, M., Henderson, J., Asymptotic attractive nonlinear fractional order Riemann-Liouville integral equations in Banach algebras, Nonlinear Studies 20, 1 (2013), 1–10. (2013) Zbl1305.45005MR3058403
  8. Abbas, S., Benchohra, M., N’Guérékata, G. M., Topics in Fractional Differential Equations, Developments in Mathematics 27, Springer, New York, 2012. (2012) Zbl1273.35001MR2962045
  9. Abbas, S., Benchohra, M., Vityuk, A. N., 10.2478/s13540-012-0012-5, Fract. Calc. Appl. Anal. 15, 2 (2012), 168–182. (2012) Zbl1302.35395MR2897771DOI10.2478/s13540-012-0012-5
  10. Abbas, S., Benchohra, M., Zhou, Y., Darboux problem for tractional order neutral functional partial hyperbolic differential equations, Int. J. Dynam. Syst. Differ. Equa. 2 (2009), 301–312. (2009) MR2583101
  11. Ahmad, B., Nieto, J. J., Riemann-Liouville fractional differential equations with fractional boundary conditions, Fixed Point Theory 13 (2012), 329–336. (2012) Zbl1315.34006MR3024321
  12. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J. J., Fractional Calculus Models and Numerical Methods, World Scientific Publishing, New York, 2012. (2012) Zbl1248.26011MR2894576
  13. Benchohra, M., Graef, J. R., Hamani, S., 10.1080/00036810802307579, Appl. Anal. 87, 7 (2008), 851–863. (2008) MR2458962DOI10.1080/00036810802307579
  14. Bota-Boriceanu, M. F., Petrusel, A., Ulam–Hyers stability for operatorial equations and inclusions, Analele Univ. I. Cuza Iasi 57 (2011), 65–74. (2011) MR2933569
  15. Cabada, A., Staněk, S., 10.1016/j.amc.2012.07.062, Appl. Math. Comput. 219 (2012), 1383–1390. (2012) Zbl1296.34013MR2983850DOI10.1016/j.amc.2012.07.062
  16. Castro, L. P., Ramos, A., 10.15352/bjma/1240336421, Banach J. Math. Anal. 3 (2009), 36–43. (2009) MR2461744DOI10.15352/bjma/1240336421
  17. Henry, D., Geometric theory of Semilinear Parabolic Partial Differential Equations, Springer-Verlag, Berlin–New York, 1989. (1989) 
  18. Hilfer, R., R., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. (2000) Zbl0998.26002MR1890104
  19. Hyers, D. H., 10.1073/pnas.27.4.222, Proc. Nat. Acad. Sci. 27 (1941), 222–224. (1941) Zbl0061.26403MR0004076DOI10.1073/pnas.27.4.222
  20. Hyers, D. H., Isac, G., Rassias, Th. M., Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998. (1998) Zbl0907.39025MR1639801
  21. Jung, S.-M., Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, 2011. (2011) Zbl1221.39038MR2790773
  22. Jung, S.-M., A fixed point approach to the stability of a Volterra integral equation, Fixed Point Theory Appl. 2007, Article ID 57064 (2007), 1–9. (2007) Zbl1155.45005MR2318689
  23. Kilbas, A. A., Marzan, S. A., 10.1007/s10625-005-0137-y, Differential Equations 41 (2005), 84–89. (2005) Zbl1160.34301MR2213269DOI10.1007/s10625-005-0137-y
  24. Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204, Elsevier Science B.V., Amsterdam, 2006. (2006) Zbl1092.45003MR2218073
  25. Ortigueira, M. D., 10.1007/978-94-007-0747-4, Lecture Notes in Electrical Engineering 84, Springer, Dordrecht, 2011. (2011) Zbl1251.26005MR2768178DOI10.1007/978-94-007-0747-4
  26. Petru, T. P., Bota, M.-F., Ulam-Hyers stabillity of operational inclusions in complete gauge spaces, Fixed Point Theory 13 (2012), 641–650. (2012) MR3024346
  27. Petru, T. P., Petrusel, A., Yao, J.-C., Ulam-Hyers stability for operatorial equations and inclusions via nonself operators, Taiwanese J. Math. 15 (2011), 2169–2193. (2011) Zbl1246.54049MR2880400
  28. Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, 1999. (1999) Zbl0924.34008MR1658022
  29. Rassias, Th. M., 10.1090/S0002-9939-1978-0507327-1, Proc. Amer. Math. Soc. 72 (1978), 297–300. (1978) MR0507327DOI10.1090/S0002-9939-1978-0507327-1
  30. Rus, I. A., Ulam stability of ordinary differential equations, Studia Univ. Babes-Bolyai, Math. 54, 4 (2009), 125–133. (2009) Zbl1224.34165MR2602351
  31. Rus, I. A., Remarks on Ulam stability of the operatorial equations, Fixed Point Theory 10 (2009), 305–320. (2009) Zbl1204.47071MR2569004
  32. Staněk, S., 10.1016/j.amc.2012.09.008, Appl. Math. Comput. 219 (2012), 2361–2370. (2012) Zbl1308.34104MR2988118DOI10.1016/j.amc.2012.09.008
  33. Tarasov, V. E., Fractional Dynamics. Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg, 2010. (2010) Zbl1214.81004MR2796453
  34. Ulam, S. M., A Collection of Mathematical Problems, Interscience Publishers, New York, 1968. (1968) MR0120127
  35. Vityuk, A. N., Golushkov, A. V., 10.1007/s11072-005-0015-9, Nonlinear Oscil. 7, 3 (2004), 318–325. (2004) MR2151816DOI10.1007/s11072-005-0015-9
  36. Wang, J., Fečkan, M., Zhou, Y, 10.1016/j.jmaa.2012.05.040, J. Math. Anal. Appl. 395, 1 (2012), 258–264. (2012) Zbl1254.34022MR2943620DOI10.1016/j.jmaa.2012.05.040
  37. Wang, J., Fečkan, M., Zhou, Y, On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equ. 8, 4 (2011), 345–361. (2011) Zbl1264.34014MR2901608
  38. Wang, J., Lv, L., Zhou, Y., 10.14232/ejqtde.2011.1.63, E. J. Qual. Theory Diff. Equ. 63 (2011), 1–10. (2011) MR2832769DOI10.14232/ejqtde.2011.1.63
  39. Wang, J., Lv, L., Zhou, Y., 10.1016/j.cnsns.2011.09.030, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 2530–2538. (2012) Zbl1252.35276MR2877697DOI10.1016/j.cnsns.2011.09.030
  40. Wang, J., Zhou, Y., 10.1016/j.aml.2011.10.009, Appl. Math. Lett. 25, 4 (2012), 723–728. (2012) Zbl1246.34012MR2875807DOI10.1016/j.aml.2011.10.009
  41. Wang, J., Zhou, Y., Fečkan, M., 10.1016/j.camwa.2012.02.021, Comput. Math. Appl. 64 (2012), 3389–3405. (2012) Zbl1268.34033MR2989367DOI10.1016/j.camwa.2012.02.021
  42. Wei, W., Li, X., Li, X., 10.1016/j.camwa.2012.02.057, Comput. Math. Appl. 64 (2012), 3468–3476. (2012) Zbl1268.45007MR2989374DOI10.1016/j.camwa.2012.02.057

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.