Complete convergence of weighted sums for arrays of rowwise ϕ -mixing random variables

Xinghui Wang; Xiaoqin Li; Shuhe Hu

Applications of Mathematics (2014)

  • Volume: 59, Issue: 5, page 589-607
  • ISSN: 0862-7940

Abstract

top
In this paper, we establish the complete convergence and complete moment convergence of weighted sums for arrays of rowwise ϕ -mixing random variables, and the Baum-Katz-type result for arrays of rowwise ϕ -mixing random variables. As an application, the Marcinkiewicz-Zygmund type strong law of large numbers for sequences of ϕ -mixing random variables is obtained. We extend and complement the corresponding results of X. J. Wang, S. H. Hu (2012).

How to cite

top

Wang, Xinghui, Li, Xiaoqin, and Hu, Shuhe. "Complete convergence of weighted sums for arrays of rowwise $\varphi $-mixing random variables." Applications of Mathematics 59.5 (2014): 589-607. <http://eudml.org/doc/261974>.

@article{Wang2014,
abstract = {In this paper, we establish the complete convergence and complete moment convergence of weighted sums for arrays of rowwise $\varphi $-mixing random variables, and the Baum-Katz-type result for arrays of rowwise $\varphi $-mixing random variables. As an application, the Marcinkiewicz-Zygmund type strong law of large numbers for sequences of $\varphi $-mixing random variables is obtained. We extend and complement the corresponding results of X. J. Wang, S. H. Hu (2012).},
author = {Wang, Xinghui, Li, Xiaoqin, Hu, Shuhe},
journal = {Applications of Mathematics},
keywords = {complete convergence; $\varphi $-mixing sequence; Marcinkiewicz-Zygmund type strong law of large numbers; -mixing sequence; complete convergence; Marcinkiewicz-Zygmund strong law of large numbers},
language = {eng},
number = {5},
pages = {589-607},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Complete convergence of weighted sums for arrays of rowwise $\varphi $-mixing random variables},
url = {http://eudml.org/doc/261974},
volume = {59},
year = {2014},
}

TY - JOUR
AU - Wang, Xinghui
AU - Li, Xiaoqin
AU - Hu, Shuhe
TI - Complete convergence of weighted sums for arrays of rowwise $\varphi $-mixing random variables
JO - Applications of Mathematics
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 5
SP - 589
EP - 607
AB - In this paper, we establish the complete convergence and complete moment convergence of weighted sums for arrays of rowwise $\varphi $-mixing random variables, and the Baum-Katz-type result for arrays of rowwise $\varphi $-mixing random variables. As an application, the Marcinkiewicz-Zygmund type strong law of large numbers for sequences of $\varphi $-mixing random variables is obtained. We extend and complement the corresponding results of X. J. Wang, S. H. Hu (2012).
LA - eng
KW - complete convergence; $\varphi $-mixing sequence; Marcinkiewicz-Zygmund type strong law of large numbers; -mixing sequence; complete convergence; Marcinkiewicz-Zygmund strong law of large numbers
UR - http://eudml.org/doc/261974
ER -

References

top
  1. Baek, J.-I., Choi, I.-B., Niu, S.-L., 10.1016/j.jkss.2007.08.001, J. Korean Stat. Soc. 37 73-80 (2008). (2008) Zbl1298.60039MR2409372DOI10.1016/j.jkss.2007.08.001
  2. Baek, J.-I., Park, S.-T., 10.1007/s10959-008-0198-y, J. Theor. Probab. 23 362-377 (2010), retraction ibid. 26 899-900 (2013). (2013) MR2644864DOI10.1007/s10959-008-0198-y
  3. Baum, L. E., Katz, M., 10.1090/S0002-9947-1965-0198524-1, Trans. Am. Math. Soc. 120 108-123 (1965). (1965) Zbl0142.14802MR0198524DOI10.1090/S0002-9947-1965-0198524-1
  4. Chen, P., Hu, T.-C., Liu, X., Volodin, A., 10.1137/S0040585X97983079, Theory Probab. Appl. 52 323-328 (2008), and Teor. Veroyatn. Primen. 52 393-397 (2007). (2007) MR2742512DOI10.1137/S0040585X97983079
  5. Chen, P., Hu, T.-C., Volodin, A., 10.1090/S0094-9000-09-00755-8, Theory Probab. Math. Stat. 77 165-176 (2008), and Teor. Jmovirn. Mat. Stat. 77 149-160 (2007). (2007) Zbl1199.60074MR2432780DOI10.1090/S0094-9000-09-00755-8
  6. Dobrushin, R. L., Central limit theorem for non-stationary Markov chains. I, II, Teor. Veroyatn. Primen. 1 72-89 (1956), Berichtigung. Ibid. 3 477 (1958). (1958) MR0086436
  7. Erdős, P., 10.1214/aoms/1177730037, Ann. Math. Stat. 20 286-291 (1949). (1949) Zbl0033.29001MR0030714DOI10.1214/aoms/1177730037
  8. Guo, M. L., Complete moment convergence of weighted sums for arrays of rowwise ϕ -mixing random variables, Int. J. Math. Math. Sci. 2012 Article ID 730962, 13 pp (2012). (2012) Zbl1253.60050MR2974698
  9. Hsu, P. L., Robbins, H., 10.1073/pnas.33.2.25, Proc. Natl. Acad. Sci. USA 33 25-31 (1947). (1947) Zbl0030.20101MR0019852DOI10.1073/pnas.33.2.25
  10. Hu, T.-C., Cabrera, M. Ordóñez, Sung, S. H., Volodin, A., 10.4134/CKMS.2003.18.2.375, Commun. Korean Math. Soc. 18 375-383 (2003). (2003) MR1986755DOI10.4134/CKMS.2003.18.2.375
  11. Jun, A., Demei, Y., 10.1016/j.spl.2007.12.020, Stat. Probab. Lett. 78 1466-1472 (2008). (2008) Zbl1155.60316MR2453801DOI10.1016/j.spl.2007.12.020
  12. Kruglov, V. M., Volodin, A. I., Hu, T.-C., 10.1016/j.spl.2006.04.006, Stat. Probab. Lett. 76 1631-1640 (2006). (2006) Zbl1100.60014MR2248851DOI10.1016/j.spl.2006.04.006
  13. Kuczmaszewska, A., 10.1016/j.spl.2006.12.007, Stat. Probab. Lett. 77 1050-1060 (2007). (2007) Zbl1120.60025MR2395060DOI10.1016/j.spl.2006.12.007
  14. Kuczmaszewska, A., 10.1016/j.spl.2008.07.030, Stat. Probab. Lett. 79 116-124 (2009). (2009) Zbl1154.60319MR2484124DOI10.1016/j.spl.2008.07.030
  15. Peligrad, M., 10.1007/BF02451434, Z. Wahrscheinlichkeitstheor. Verw. Geb. 70 307-314 (1985). (1985) Zbl0554.60038MR0799152DOI10.1007/BF02451434
  16. Peligrad, M., Gut, A., Almost-sure results for a class of dependent random variables, J. Theor. Probab. 12 87-104 (1999). (1999) Zbl0928.60025MR1674972
  17. Qiu, D. H., Hu, T.-C., Cabrera, M. O., Volodin, A., 10.1007/s10986-012-9175-3, Lith. Math. J. 52 316-325 (2012). (2012) MR3020945DOI10.1007/s10986-012-9175-3
  18. Shao, Q. M., A moment inequality and its applications, Acta Math. Sin. 31 736-747 Chinese (1988). (1988) Zbl0698.60025MR1000416
  19. Shen, A. T., Wang, X. H., Ling, J. M., 10.1080/03610926, Commun. Stat. Theory Methods DOI:10.1080/03610926. 2012.725501. DOI10.1080/03610926
  20. Stoica, G., 10.1016/j.jmaa.2007.03.012, J. Math. Anal. Appl. 336 1489-1492 (2007). (2007) Zbl1130.60020MR2353031DOI10.1016/j.jmaa.2007.03.012
  21. Stoica, G., 10.1016/j.jmaa.2011.04.008, J. Math. Anal. Appl. 381 910-913 (2011). (2011) Zbl1237.60025MR2802125DOI10.1016/j.jmaa.2011.04.008
  22. Sung, S. H., Moment inequalities and complete moment convergence, J. Inequal. Appl. 2009 Article ID 271265, 14 pp (2009). (2009) Zbl1180.60019MR2551753
  23. Sung, S. H., Complete convergence for weighted sums of ρ * -mixing random variables, Discrete Dyn. Nat. Soc. 2010 Article ID 630608, 13 pp (2010). (2010) Zbl1193.60045MR2611046
  24. Sung, S. H., On complete convergence for weighted sums of arrays of dependent random variables, Abstr. Appl. Anal. 2011 Article ID 630583, 11 pp (2011). (2011) Zbl1231.60025MR2861513
  25. Sung, S. H., Volodin, A. I., Hu, T.-C., 10.1016/j.spl.2004.11.006, Stat. Probab. Lett. 71 303-311 (2005). (2005) Zbl1087.60030MR2145498DOI10.1016/j.spl.2004.11.006
  26. Wang, X. J., Hu, S. H., 10.1007/s13398-011-0056-0, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 106 321-331 (2012). (2012) Zbl1266.60056MR2978917DOI10.1007/s13398-011-0056-0
  27. Wang, X. J., Hu, S. H., Yang, W. Z., Shen, Y., On complete convergence for weighted sums of ϕ -mixing random variables, J. Inequal. Appl. 2010 Article ID 372390, 13 pp (2010). (2010) Zbl1208.60031MR2671020
  28. Wang, X. J., Hu, S. H., Yang, W. Z., Wang, X. H., Convergence rates in the strong law of large numbers for martingale difference sequences, Abstr. Appl. Anal. 2012 Article ID 572493, 13 pp (2012). (2012) Zbl1253.60045MR2955034
  29. Wang, X. J., Hu, S. H., Yang, W. Z., Wang, X. H., On complete convergence of weighted sums for arrays of rowwise asymptotically almost negatively associated random variables, Abstr. Appl. Anal. 2012 Article ID 315138, 15 pp (2012). (2012) Zbl1253.60044MR2947673
  30. Wu, Q. Y., Probability Limit Theory for Mixed Sequence, China Science Press, Beijing (2006), Chinese. (2006) 
  31. Wu, Q. Y., A complete convergence theorem for weighted sums of arrays of rowwise negatively dependent random variables, J. Inequal. Appl. 2012 Article ID 50, 10 pp. (electronic only) (2012). (2012) Zbl1293.62053MR2928247
  32. Zhang, L. X., Wen, J. W., The strong law of large numbers for B -valued random fields, Chin. Ann. Math., Ser. A 22 205-216 Chinese (2001). (2001) Zbl0983.60016MR1837525
  33. Zhou, X. C., Lin, J. G., On complete convergence for arrays of rowwise ρ -mixing random variables and its applications, J. Inequal. Appl. 2010 Article ID 769201, 12 pp (2010). (2010) Zbl1208.60032MR2738676

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.