Calculating all elements of minimal index in the infinite parametric family of simplest quartic fields

István Gaál; Gábor Petrányi

Czechoslovak Mathematical Journal (2014)

  • Volume: 64, Issue: 2, page 465-475
  • ISSN: 0011-4642

Abstract

top
It is a classical problem in algebraic number theory to decide if a number field is monogeneous, that is if it admits power integral bases. It is especially interesting to consider this question in an infinite parametric family of number fields. In this paper we consider the infinite parametric family of simplest quartic fields K generated by a root ξ of the polynomial P t ( x ) = x 4 - t x 3 - 6 x 2 + t x + 1 , assuming that t > 0 , t 3 and t 2 + 16 has no odd square factors. In addition to generators of power integral bases we also calculate the minimal index and all elements of minimal index in all fields in this family.

How to cite

top

Gaál, István, and Petrányi, Gábor. "Calculating all elements of minimal index in the infinite parametric family of simplest quartic fields." Czechoslovak Mathematical Journal 64.2 (2014): 465-475. <http://eudml.org/doc/261976>.

@article{Gaál2014,
abstract = {It is a classical problem in algebraic number theory to decide if a number field is monogeneous, that is if it admits power integral bases. It is especially interesting to consider this question in an infinite parametric family of number fields. In this paper we consider the infinite parametric family of simplest quartic fields $K$ generated by a root $\xi $ of the polynomial $P_t(x)=x^4-tx^3-6x^2+tx+1$, assuming that $t>0$, $t\ne 3$ and $t^2+16$ has no odd square factors. In addition to generators of power integral bases we also calculate the minimal index and all elements of minimal index in all fields in this family.},
author = {Gaál, István, Petrányi, Gábor},
journal = {Czechoslovak Mathematical Journal},
keywords = {simplest quartic field; power integral base; monogeneity; simplest quartic field; power integral base; monogeneity},
language = {eng},
number = {2},
pages = {465-475},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Calculating all elements of minimal index in the infinite parametric family of simplest quartic fields},
url = {http://eudml.org/doc/261976},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Gaál, István
AU - Petrányi, Gábor
TI - Calculating all elements of minimal index in the infinite parametric family of simplest quartic fields
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 2
SP - 465
EP - 475
AB - It is a classical problem in algebraic number theory to decide if a number field is monogeneous, that is if it admits power integral bases. It is especially interesting to consider this question in an infinite parametric family of number fields. In this paper we consider the infinite parametric family of simplest quartic fields $K$ generated by a root $\xi $ of the polynomial $P_t(x)=x^4-tx^3-6x^2+tx+1$, assuming that $t>0$, $t\ne 3$ and $t^2+16$ has no odd square factors. In addition to generators of power integral bases we also calculate the minimal index and all elements of minimal index in all fields in this family.
LA - eng
KW - simplest quartic field; power integral base; monogeneity; simplest quartic field; power integral base; monogeneity
UR - http://eudml.org/doc/261976
ER -

References

top
  1. Char, B. W., Geddes, K. O., Gonnet, G. H., Leong, B. L., Monagan, M. B., Watt, S. M., Maple V---language reference manual, Springer, New York (1991). (1991) Zbl0758.68038
  2. Daberkow, M., Fieker, C., Klüners, J., Pohst, M., Roegner, K., Schörnig, M., Wildanger, K., 10.1006/jsco.1996.0126, J. Symb. Comput. 24 (1997), 267-283. (1997) Zbl0886.11070MR1484479DOI10.1006/jsco.1996.0126
  3. Gaál, I., Diophantine Equations and Power Integral Bases. New Computational Methods, Birkhäuser, Boston (2002). (2002) Zbl1016.11059MR1896601
  4. Gaál, I., Lettl, G., 10.1007/s006050070022, Monatsh. Math. 131 (2000), 29-35. (2000) Zbl0995.11024MR1796800DOI10.1007/s006050070022
  5. Gaál, I., Pethő, A., Pohst, M., 10.1006/jnth.1996.0035, J. Number Theory 57 (1996), 90-104. (1996) Zbl0853.11023MR1378574DOI10.1006/jnth.1996.0035
  6. Gaál, I., Pohst, M., 10.1090/S0025-5718-97-00868-5, Math. Comput. 66 (1997), 1689-1696. (1997) Zbl0899.11064MR1423074DOI10.1090/S0025-5718-97-00868-5
  7. Gras, M. N., Table numérique du nombre de classes et des unités des extensions cycliques réelles de degré 4 de , French Publ. Math. Fac. Sci. Besançon, Théor. Nombres, Année 1977-1978, Fasc. 2 (1978). (1978) MR0898667
  8. Jadrijević, B., 10.1007/s10998-009-10155-3, Period. Math. Hung. 58 (2009), 155-180. (2009) Zbl1265.11061MR2531162DOI10.1007/s10998-009-10155-3
  9. Jadrijević, B., Solving index form equations in the two parametric families of biquadratic fields, Math. Commun. 14 (2009), 341-363. (2009) MR2743182
  10. Kim, H. K., Lee, J. H., Evaluation of the Dedekind zeta function at s = - 1 of the simplest quartic fields, Trends in Math., New Ser., Inf. Center for Math. Sci., 11 (2009), 63-79. (2009) 
  11. Lazarus, A. J., 10.1017/S0027763000003378, Nagoya Math. J. 121 (1991), 1-13. (1991) Zbl0719.11073MR1096465DOI10.1017/S0027763000003378
  12. Lettl, G., A.Pethő,, 10.1007/BF02953340, Abh. Math. Semin. Univ. Hamb. 65 (1995), 365-383. (1995) MR1359142DOI10.1007/BF02953340
  13. Lettl, G., Pethő, A., Voutier, P., 10.1090/S0002-9947-99-02244-8, Trans. Am. Math. Soc. 351 (1999), 1871-1894. (1999) Zbl0920.11041MR1487624DOI10.1090/S0002-9947-99-02244-8
  14. Mordell, L. J., Diophantine Equations, Pure and Applied Mathematics 30 Academic Press, London (1969). (1969) Zbl0188.34503MR0249355
  15. Olajos, P., 10.1080/10586458.2005.10128916, Exp. Math. 14 (2005), 129-132. (2005) Zbl1092.11042MR2169516DOI10.1080/10586458.2005.10128916
  16. Shanks, D., 10.1090/S0025-5718-1974-0352049-8, Math. Comput. 28 (1974), 1137-1152. (1974) Zbl0307.12005MR0352049DOI10.1090/S0025-5718-1974-0352049-8

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.