Calculating all elements of minimal index in the infinite parametric family of simplest quartic fields
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 2, page 465-475
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGaál, István, and Petrányi, Gábor. "Calculating all elements of minimal index in the infinite parametric family of simplest quartic fields." Czechoslovak Mathematical Journal 64.2 (2014): 465-475. <http://eudml.org/doc/261976>.
@article{Gaál2014,
abstract = {It is a classical problem in algebraic number theory to decide if a number field is monogeneous, that is if it admits power integral bases. It is especially interesting to consider this question in an infinite parametric family of number fields. In this paper we consider the infinite parametric family of simplest quartic fields $K$ generated by a root $\xi $ of the polynomial $P_t(x)=x^4-tx^3-6x^2+tx+1$, assuming that $t>0$, $t\ne 3$ and $t^2+16$ has no odd square factors. In addition to generators of power integral bases we also calculate the minimal index and all elements of minimal index in all fields in this family.},
author = {Gaál, István, Petrányi, Gábor},
journal = {Czechoslovak Mathematical Journal},
keywords = {simplest quartic field; power integral base; monogeneity; simplest quartic field; power integral base; monogeneity},
language = {eng},
number = {2},
pages = {465-475},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Calculating all elements of minimal index in the infinite parametric family of simplest quartic fields},
url = {http://eudml.org/doc/261976},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Gaál, István
AU - Petrányi, Gábor
TI - Calculating all elements of minimal index in the infinite parametric family of simplest quartic fields
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 2
SP - 465
EP - 475
AB - It is a classical problem in algebraic number theory to decide if a number field is monogeneous, that is if it admits power integral bases. It is especially interesting to consider this question in an infinite parametric family of number fields. In this paper we consider the infinite parametric family of simplest quartic fields $K$ generated by a root $\xi $ of the polynomial $P_t(x)=x^4-tx^3-6x^2+tx+1$, assuming that $t>0$, $t\ne 3$ and $t^2+16$ has no odd square factors. In addition to generators of power integral bases we also calculate the minimal index and all elements of minimal index in all fields in this family.
LA - eng
KW - simplest quartic field; power integral base; monogeneity; simplest quartic field; power integral base; monogeneity
UR - http://eudml.org/doc/261976
ER -
References
top- Char, B. W., Geddes, K. O., Gonnet, G. H., Leong, B. L., Monagan, M. B., Watt, S. M., Maple V---language reference manual, Springer, New York (1991). (1991) Zbl0758.68038
- Daberkow, M., Fieker, C., Klüners, J., Pohst, M., Roegner, K., Schörnig, M., Wildanger, K., 10.1006/jsco.1996.0126, J. Symb. Comput. 24 (1997), 267-283. (1997) Zbl0886.11070MR1484479DOI10.1006/jsco.1996.0126
- Gaál, I., Diophantine Equations and Power Integral Bases. New Computational Methods, Birkhäuser, Boston (2002). (2002) Zbl1016.11059MR1896601
- Gaál, I., Lettl, G., 10.1007/s006050070022, Monatsh. Math. 131 (2000), 29-35. (2000) Zbl0995.11024MR1796800DOI10.1007/s006050070022
- Gaál, I., Pethő, A., Pohst, M., 10.1006/jnth.1996.0035, J. Number Theory 57 (1996), 90-104. (1996) Zbl0853.11023MR1378574DOI10.1006/jnth.1996.0035
- Gaál, I., Pohst, M., 10.1090/S0025-5718-97-00868-5, Math. Comput. 66 (1997), 1689-1696. (1997) Zbl0899.11064MR1423074DOI10.1090/S0025-5718-97-00868-5
- Gras, M. N., Table numérique du nombre de classes et des unités des extensions cycliques réelles de degré 4 de , French Publ. Math. Fac. Sci. Besançon, Théor. Nombres, Année 1977-1978, Fasc. 2 (1978). (1978) MR0898667
- Jadrijević, B., 10.1007/s10998-009-10155-3, Period. Math. Hung. 58 (2009), 155-180. (2009) Zbl1265.11061MR2531162DOI10.1007/s10998-009-10155-3
- Jadrijević, B., Solving index form equations in the two parametric families of biquadratic fields, Math. Commun. 14 (2009), 341-363. (2009) MR2743182
- Kim, H. K., Lee, J. H., Evaluation of the Dedekind zeta function at of the simplest quartic fields, Trends in Math., New Ser., Inf. Center for Math. Sci., 11 (2009), 63-79. (2009)
- Lazarus, A. J., 10.1017/S0027763000003378, Nagoya Math. J. 121 (1991), 1-13. (1991) Zbl0719.11073MR1096465DOI10.1017/S0027763000003378
- Lettl, G., A.Pethő,, 10.1007/BF02953340, Abh. Math. Semin. Univ. Hamb. 65 (1995), 365-383. (1995) MR1359142DOI10.1007/BF02953340
- Lettl, G., Pethő, A., Voutier, P., 10.1090/S0002-9947-99-02244-8, Trans. Am. Math. Soc. 351 (1999), 1871-1894. (1999) Zbl0920.11041MR1487624DOI10.1090/S0002-9947-99-02244-8
- Mordell, L. J., Diophantine Equations, Pure and Applied Mathematics 30 Academic Press, London (1969). (1969) Zbl0188.34503MR0249355
- Olajos, P., 10.1080/10586458.2005.10128916, Exp. Math. 14 (2005), 129-132. (2005) Zbl1092.11042MR2169516DOI10.1080/10586458.2005.10128916
- Shanks, D., 10.1090/S0025-5718-1974-0352049-8, Math. Comput. 28 (1974), 1137-1152. (1974) Zbl0307.12005MR0352049DOI10.1090/S0025-5718-1974-0352049-8
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.