A hybrid mean value involving two-term exponential sums and polynomial character sums

Han Di

Czechoslovak Mathematical Journal (2014)

  • Volume: 64, Issue: 1, page 53-62
  • ISSN: 0011-4642

Abstract

top
Let q 3 be a positive integer. For any integers m and n , the two-term exponential sum C ( m , n , k ; q ) is defined by C ( m , n , k ; q ) = a = 1 q e ( ( m a k + n a ) / q ) , where e ( y ) = e 2 π i y . In this paper, we use the properties of Gauss sums and the estimate for Dirichlet character of polynomials to study the mean value problem involving two-term exponential sums and Dirichlet character of polynomials, and give an interesting asymptotic formula for it.

How to cite

top

Di, Han. "A hybrid mean value involving two-term exponential sums and polynomial character sums." Czechoslovak Mathematical Journal 64.1 (2014): 53-62. <http://eudml.org/doc/261988>.

@article{Di2014,
abstract = {Let $q \ge 3$ be a positive integer. For any integers $m$ and $n$, the two-term exponential sum $C(m,n,k;q)$ is defined by $C(m,n,k;q) = \sum _\{a=1\}^q e (\{(ma^k +na)\}/\{q\})$, where $e(y)=\{\rm e\}^\{2\pi \{\rm i\} y\}$. In this paper, we use the properties of Gauss sums and the estimate for Dirichlet character of polynomials to study the mean value problem involving two-term exponential sums and Dirichlet character of polynomials, and give an interesting asymptotic formula for it.},
author = {Di, Han},
journal = {Czechoslovak Mathematical Journal},
keywords = {Dirichlet character of polynomials; two-term exponential sums; hybrid mean value; asymptotic formula; Dirichlet character of polynomials; two-term exponential sums; hybrid mean value; asymptotic formula},
language = {eng},
number = {1},
pages = {53-62},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A hybrid mean value involving two-term exponential sums and polynomial character sums},
url = {http://eudml.org/doc/261988},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Di, Han
TI - A hybrid mean value involving two-term exponential sums and polynomial character sums
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 1
SP - 53
EP - 62
AB - Let $q \ge 3$ be a positive integer. For any integers $m$ and $n$, the two-term exponential sum $C(m,n,k;q)$ is defined by $C(m,n,k;q) = \sum _{a=1}^q e ({(ma^k +na)}/{q})$, where $e(y)={\rm e}^{2\pi {\rm i} y}$. In this paper, we use the properties of Gauss sums and the estimate for Dirichlet character of polynomials to study the mean value problem involving two-term exponential sums and Dirichlet character of polynomials, and give an interesting asymptotic formula for it.
LA - eng
KW - Dirichlet character of polynomials; two-term exponential sums; hybrid mean value; asymptotic formula; Dirichlet character of polynomials; two-term exponential sums; hybrid mean value; asymptotic formula
UR - http://eudml.org/doc/261988
ER -

References

top
  1. Apostol, T. M., Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics, Springer New York (1976). (1976) MR0434929
  2. Burgess, D. A., 10.1112/plms/s3-13.1.537, Proc. Lond. Math. Soc., III. Ser. 13 (1963), 537-548. (1963) Zbl0118.04704MR0148627DOI10.1112/plms/s3-13.1.537
  3. Cochrane, T., Coffelt, J., Pinner, C., 10.4064/aa116-1-4, Acta Arith. 116 (2005), 35-41. (2005) Zbl1082.11050MR2114903DOI10.4064/aa116-1-4
  4. Cochrane, T., Pinner, C., 10.1016/j.jnt.2005.04.001, J. Number Theory 116 (2006), 270-292. (2006) Zbl1093.11058MR2195926DOI10.1016/j.jnt.2005.04.001
  5. Cochrane, T., Zheng, Z., 10.4310/AJM.2000.v4.n4.a3, Asian J. Math. 4 (2000), 757-774. (2000) Zbl1030.11040MR1870657DOI10.4310/AJM.2000.v4.n4.a3
  6. Cochrane, T., Zheng, Z., 10.4064/aa-91-3-249-278, Acta Arith. 91 (1999), 249-278. (1999) Zbl0937.11031MR1735676DOI10.4064/aa-91-3-249-278
  7. Cochrane, T., Zheng, Z., 10.1007/BF02878976, Sci. China, Ser. A 44 (2001), 1003-1015. (2001) Zbl1012.11078MR1857555DOI10.1007/BF02878976
  8. Granville, A., Soundararajan, K., 10.1090/S0894-0347-06-00536-4, J. Am. Math. Soc. 20 (2007), 357-384. (2007) Zbl1210.11090MR2276774DOI10.1090/S0894-0347-06-00536-4
  9. Hua, L.-K., Introduction to Number Theory. Unaltered reprinting of the 1957 edition, Science Press Peking (1964), Chinese. (1964) MR0094310
  10. Weil, A., 10.1073/pnas.34.5.204, Proc. Natl. Acad. Sci. USA 34 (1948), 204-207. (1948) Zbl0032.26102MR0027006DOI10.1073/pnas.34.5.204
  11. Zhang, W., Yao, W., 10.4064/aa115-3-3, Acta Arith. 115 (2004), 225-229. (2004) Zbl1076.11048MR2100501DOI10.4064/aa115-3-3
  12. Zhang, W., Yi, Y., 10.1112/S0024609302001030, Bull. Lond. Math. Soc. 34 (2002), 469-473. (2002) Zbl1038.11052MR1897426DOI10.1112/S0024609302001030

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.