A hybrid mean value involving two-term exponential sums and polynomial character sums
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 1, page 53-62
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDi, Han. "A hybrid mean value involving two-term exponential sums and polynomial character sums." Czechoslovak Mathematical Journal 64.1 (2014): 53-62. <http://eudml.org/doc/261988>.
@article{Di2014,
abstract = {Let $q \ge 3$ be a positive integer. For any integers $m$ and $n$, the two-term exponential sum $C(m,n,k;q)$ is defined by $C(m,n,k;q) = \sum _\{a=1\}^q e (\{(ma^k +na)\}/\{q\})$, where $e(y)=\{\rm e\}^\{2\pi \{\rm i\} y\}$. In this paper, we use the properties of Gauss sums and the estimate for Dirichlet character of polynomials to study the mean value problem involving two-term exponential sums and Dirichlet character of polynomials, and give an interesting asymptotic formula for it.},
author = {Di, Han},
journal = {Czechoslovak Mathematical Journal},
keywords = {Dirichlet character of polynomials; two-term exponential sums; hybrid mean value; asymptotic formula; Dirichlet character of polynomials; two-term exponential sums; hybrid mean value; asymptotic formula},
language = {eng},
number = {1},
pages = {53-62},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A hybrid mean value involving two-term exponential sums and polynomial character sums},
url = {http://eudml.org/doc/261988},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Di, Han
TI - A hybrid mean value involving two-term exponential sums and polynomial character sums
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 1
SP - 53
EP - 62
AB - Let $q \ge 3$ be a positive integer. For any integers $m$ and $n$, the two-term exponential sum $C(m,n,k;q)$ is defined by $C(m,n,k;q) = \sum _{a=1}^q e ({(ma^k +na)}/{q})$, where $e(y)={\rm e}^{2\pi {\rm i} y}$. In this paper, we use the properties of Gauss sums and the estimate for Dirichlet character of polynomials to study the mean value problem involving two-term exponential sums and Dirichlet character of polynomials, and give an interesting asymptotic formula for it.
LA - eng
KW - Dirichlet character of polynomials; two-term exponential sums; hybrid mean value; asymptotic formula; Dirichlet character of polynomials; two-term exponential sums; hybrid mean value; asymptotic formula
UR - http://eudml.org/doc/261988
ER -
References
top- Apostol, T. M., Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics, Springer New York (1976). (1976) MR0434929
- Burgess, D. A., 10.1112/plms/s3-13.1.537, Proc. Lond. Math. Soc., III. Ser. 13 (1963), 537-548. (1963) Zbl0118.04704MR0148627DOI10.1112/plms/s3-13.1.537
- Cochrane, T., Coffelt, J., Pinner, C., 10.4064/aa116-1-4, Acta Arith. 116 (2005), 35-41. (2005) Zbl1082.11050MR2114903DOI10.4064/aa116-1-4
- Cochrane, T., Pinner, C., 10.1016/j.jnt.2005.04.001, J. Number Theory 116 (2006), 270-292. (2006) Zbl1093.11058MR2195926DOI10.1016/j.jnt.2005.04.001
- Cochrane, T., Zheng, Z., 10.4310/AJM.2000.v4.n4.a3, Asian J. Math. 4 (2000), 757-774. (2000) Zbl1030.11040MR1870657DOI10.4310/AJM.2000.v4.n4.a3
- Cochrane, T., Zheng, Z., 10.4064/aa-91-3-249-278, Acta Arith. 91 (1999), 249-278. (1999) Zbl0937.11031MR1735676DOI10.4064/aa-91-3-249-278
- Cochrane, T., Zheng, Z., 10.1007/BF02878976, Sci. China, Ser. A 44 (2001), 1003-1015. (2001) Zbl1012.11078MR1857555DOI10.1007/BF02878976
- Granville, A., Soundararajan, K., 10.1090/S0894-0347-06-00536-4, J. Am. Math. Soc. 20 (2007), 357-384. (2007) Zbl1210.11090MR2276774DOI10.1090/S0894-0347-06-00536-4
- Hua, L.-K., Introduction to Number Theory. Unaltered reprinting of the 1957 edition, Science Press Peking (1964), Chinese. (1964) MR0094310
- Weil, A., 10.1073/pnas.34.5.204, Proc. Natl. Acad. Sci. USA 34 (1948), 204-207. (1948) Zbl0032.26102MR0027006DOI10.1073/pnas.34.5.204
- Zhang, W., Yao, W., 10.4064/aa115-3-3, Acta Arith. 115 (2004), 225-229. (2004) Zbl1076.11048MR2100501DOI10.4064/aa115-3-3
- Zhang, W., Yi, Y., 10.1112/S0024609302001030, Bull. Lond. Math. Soc. 34 (2002), 469-473. (2002) Zbl1038.11052MR1897426DOI10.1112/S0024609302001030
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.