Commutators of sublinear operators generated by Calderón-Zygmund operator on generalized weighted Morrey spaces
Vagif Sabir Guliyev; Turhan Karaman; Rza Chingiz Mustafayev; Ayhan Şerbetçi
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 2, page 365-385
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGuliyev, Vagif Sabir, et al. "Commutators of sublinear operators generated by Calderón-Zygmund operator on generalized weighted Morrey spaces." Czechoslovak Mathematical Journal 64.2 (2014): 365-385. <http://eudml.org/doc/261997>.
@article{Guliyev2014,
abstract = {In this paper, the boundedness of a large class of sublinear commutator operators $T_\{b\}$ generated by a Calderón-Zygmund type operator on a generalized weighted Morrey spaces $M_\{p,\varphi \}(w)$ with the weight function $w$ belonging to Muckenhoupt’s class $A_\{p\}$ is studied. When $1<p<\infty $ and $b \in \{\rm BMO\}$, sufficient conditions on the pair $(\varphi _1,\varphi _2)$ which ensure the boundedness of the operator $T_\{b\}$ from $M_\{p,\varphi _1\}(w)$ to $M_\{p,\varphi _2\}(w)$ are found. In all cases the conditions for the boundedness of $T_\{b\}$ are given in terms of Zygmund-type integral inequalities on $(\varphi _1,\varphi _2)$, which do not require any assumption on monotonicity of $\varphi _1(x,r)$, $\varphi _2(x,r)$ in $r$. Then these results are applied to several particular operators such as the pseudo-differential operators, Littlewood-Paley operator, Marcinkiewicz operator and Bochner-Riesz operator.},
author = {Guliyev, Vagif Sabir, Karaman, Turhan, Mustafayev, Rza Chingiz, Şerbetçi, Ayhan},
journal = {Czechoslovak Mathematical Journal},
keywords = {generalized weighted Morrey space; sublinear operator; commutator; BMO space; maximal operator; Calderón-Zygmund operator; generalized weighted Morrey space; sublinear operator; commutator; BMO; maximal operator; Calderón-Zygmund operator},
language = {eng},
number = {2},
pages = {365-385},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Commutators of sublinear operators generated by Calderón-Zygmund operator on generalized weighted Morrey spaces},
url = {http://eudml.org/doc/261997},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Guliyev, Vagif Sabir
AU - Karaman, Turhan
AU - Mustafayev, Rza Chingiz
AU - Şerbetçi, Ayhan
TI - Commutators of sublinear operators generated by Calderón-Zygmund operator on generalized weighted Morrey spaces
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 2
SP - 365
EP - 385
AB - In this paper, the boundedness of a large class of sublinear commutator operators $T_{b}$ generated by a Calderón-Zygmund type operator on a generalized weighted Morrey spaces $M_{p,\varphi }(w)$ with the weight function $w$ belonging to Muckenhoupt’s class $A_{p}$ is studied. When $1<p<\infty $ and $b \in {\rm BMO}$, sufficient conditions on the pair $(\varphi _1,\varphi _2)$ which ensure the boundedness of the operator $T_{b}$ from $M_{p,\varphi _1}(w)$ to $M_{p,\varphi _2}(w)$ are found. In all cases the conditions for the boundedness of $T_{b}$ are given in terms of Zygmund-type integral inequalities on $(\varphi _1,\varphi _2)$, which do not require any assumption on monotonicity of $\varphi _1(x,r)$, $\varphi _2(x,r)$ in $r$. Then these results are applied to several particular operators such as the pseudo-differential operators, Littlewood-Paley operator, Marcinkiewicz operator and Bochner-Riesz operator.
LA - eng
KW - generalized weighted Morrey space; sublinear operator; commutator; BMO space; maximal operator; Calderón-Zygmund operator; generalized weighted Morrey space; sublinear operator; commutator; BMO; maximal operator; Calderón-Zygmund operator
UR - http://eudml.org/doc/261997
ER -
References
top- Burenkov, V. I., Gogatishvili, A., Guliyev, V. S., Mustafayev, R. C., Boundedness of the fractional maximal operator in local Morrey-type spaces, Complex Var. Elliptic Equ. 55 739-758 (2010). (2010) Zbl1207.42015MR2674862
- Burenkov, V. I., Guliyev, H. V., Guliyev, V. S., 10.1016/j.cam.2006.10.085, J. Comput. Appl. Math. 208 280-301 (2007). (2007) Zbl1134.46014MR2347750DOI10.1016/j.cam.2006.10.085
- Burenkov, V. I., Guliyev, V. S., 10.1007/s11118-008-9113-5, Potential Anal. 30 211-249 (2009). (2009) Zbl1171.42003MR2480959DOI10.1007/s11118-008-9113-5
- Chiarenza, F., Frasca, M., Longo, P., Interior estimates for non-divergence elliptic equations with discontinuous coefficients, Ric. Mat. 40 149-168 (1991). (1991) MR1191890
- Chiarenza, F., Frasca, M., Longo, P., -solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients, Trans. Am. Math. Soc. 336 841-853 (1993). (1993) MR1088476
- Coifman, R. R., Meyer, Y., Beyond pseudodifferential operators, Asterisque 57 Société Mathématique de France, Paris (1978), French. (1978) MR0518170
- Coifman, R. R., Rochberg, R., Weiss, G., 10.2307/1970954, Ann. Math. 103 611-635 (1976). (1976) Zbl0326.32011MR0412721DOI10.2307/1970954
- Fazio, G. Di, Ragusa, M. A., 10.1006/jfan.1993.1032, J. Funct. Anal. 112 241-256 (1993). (1993) Zbl0822.35036MR1213138DOI10.1006/jfan.1993.1032
- Ding, Y., Yang, D., Zhou, Z., Boundedness of sublinear operators and commutators on , Yokohama Math. J. 46 15-27 (1998). (1998) MR1670757
- Garcí{a}-Cuerva, J., Francia, J. L. Rubio de, Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies 116. Mathematical Notes 104 North-Holland, Amsterdam (1985). (1985) MR0807149
- Grafakos, L., Classical and Modern Fourier Analysis, Pearson/Prentice Hall Upper Saddle River (2004). (2004) Zbl1148.42001MR2449250
- Guliyev, V. S., Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces, J. Inequal. Appl. 2009 Article ID 503948, 20 pages (2009). (2009) Zbl1193.42082MR2579556
- Guliyev, V. S., Function Spaces, Integral Operators and Two Weighted Inequalities on Homogeneous Groups, Some Applications Baku (1996). (1996)
- Guliyev, V. S., Integral Operators on Function Spaces on the Homogeneous Groups and on Domains in . Doctoral Degree Dissertation, Mat. Inst. Steklov Moskva (1994), Russian. (1994)
- Guliyev, V. S., Aliyev, S. S., Karaman, T., Boundedness of a class of sublinear operators and their commutators on generalized Morrey spaces, Abstr. Appl. Anal. 2011 Article ID 356041, 18 pages (2011). (2011) Zbl1228.42017MR2819766
- Guliyev, V. S., Hasanov, J. J., Samko, S. G., 10.7146/math.scand.a-15156, Math. Scand. 107 285-304 (2010). (2010) Zbl1213.42077MR2735097DOI10.7146/math.scand.a-15156
- Hörmander, L., Pseudo-differential operators and hypoelliptic equations, Proc. Sympos. Pure Math. 10, Chicago, Ill., 1966 American Mathematical Society Providence 138-183 (1967). (1967) Zbl0167.09603MR0383152
- Karaman, T., Guliyev, V. S., Serbetci, A., Boundedness of sublinear operators generated by Calderón-Zygmund operators on generalized weighted Morrey spaces, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) LX f.1, 18 pages (2014). (2014) MR3252469
- Komori, Y., Shirai, S., 10.1002/mana.200610733, Math. Nachr. 282 219-231 (2009). (2009) Zbl1160.42008MR2493512DOI10.1002/mana.200610733
- Lin, Y., 10.1007/s10114-007-0974-0, Acta Math. Sin., Engl. Ser. 23 2097-2110 (2007). (2007) Zbl1131.42014MR2359125DOI10.1007/s10114-007-0974-0
- Lin, Y., Lu, S., Strongly singular Calderón-Zygmund operators and their commutators, Jordan Journal of Mathematics and Statistics 1 31-49 (2008). (2008) Zbl1279.42018MR2261876
- Liu, L., 10.4099/math1924.29.1, Jap. J. Math., New Ser. 29 1-13 (2003). (2003) Zbl1046.42013MR1986863DOI10.4099/math1924.29.1
- Liu, L., Lu, S., 10.14492/hokmj/1350652427, Hokkaido Math. J. 32 85-99 (2003). (2003) MR1962028DOI10.14492/hokmj/1350652427
- Liu, Y., Chen, D., 10.1007/s10496-008-0321-z, Anal. Theory. Appl. 24 321-329 (2008). (2008) Zbl1199.42105MR2471861DOI10.1007/s10496-008-0321-z
- Lu, S., Ding, Y., Yan, D., Singular Integrals and Related Topics, World Scientific Publishing Hackensack (2007). (2007) Zbl1124.42011MR2354214
- Lu, G., Lu, S., Yang, D., 10.1023/A:1016568918973, Anal. Math. 28 103-134 (2002). (2002) Zbl1026.43007MR1918254DOI10.1023/A:1016568918973
- Miller, N., 10.1090/S0002-9947-1982-0637030-4, Trans. Am. Math. Soc. 269 91-109 (1982). (1982) Zbl0482.35082MR0637030DOI10.1090/S0002-9947-1982-0637030-4
- Mizuhara, T., Boundedness of some classical operators on generalized Morrey spaces, Harmonic Analysis. Proceedings of a conference in Sendai, Japan, 1990 S. Igari Springer Tokyo 183-189 (1991). (1991) Zbl0771.42007MR1261439
- Jr., C. B. Morrey, 10.1090/S0002-9947-1938-1501936-8, Trans. Am. Math. Soc. 43 126-166 (1938). (1938) Zbl0018.40501MR1501936DOI10.1090/S0002-9947-1938-1501936-8
- Muckenhoupt, B., Wheeden, R. L., 10.4064/sm-54-3-221-237, Stud. Math. 54 221-237 (1976). (1976) Zbl0318.26014MR0399741DOI10.4064/sm-54-3-221-237
- Nakai, E., 10.1002/mana.19941660108, Math. Nachr. 166 95-103 (1994). (1994) Zbl0837.42008MR1273325DOI10.1002/mana.19941660108
- Peetre, J., 10.1016/0022-1236(69)90022-6, J. Funct. Anal. 4 71-87 (1969). (1969) MR0241965DOI10.1016/0022-1236(69)90022-6
- Polidoro, S., Ragusa, M. A., 10.1023/A:1011261019736, Potential Anal. 14 341-350 (2001). (2001) Zbl0980.35081MR1825690DOI10.1023/A:1011261019736
- Sawano, Y., 10.1007/s00030-008-6032-5, NoDEA, Nonlinear Differ. Equ. Appl. 15 413-425 (2008). (2008) Zbl1173.42317MR2465971DOI10.1007/s00030-008-6032-5
- Shi, X., Sun, Q., 10.1090/S0002-9939-1992-1136237-1, Proc. Am. Math. Soc. 116 665-673 (1992). (1992) Zbl0786.42006MR1136237DOI10.1090/S0002-9939-1992-1136237-1
- Sjölin, P., 10.1007/BF02383638, Ark. Mat. 9 (1971), 65-90. (1971) Zbl0212.41703MR0336222DOI10.1007/BF02383638
- Soria, F., Weiss, G., 10.1512/iumj.1994.43.43009, Indiana Univ. Math. J. 43 187-204 (1994). (1994) Zbl0803.42004MR1275458DOI10.1512/iumj.1994.43.43009
- Stein, E. M., Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals. With the assistance of Timothy S. Murphy, Princeton Mathematical Series 43. Monographs in Harmonic Analysis III Princeton University Press, Princeton (1993). (1993) Zbl0821.42001MR1232192
- Stein, E. M., 10.1090/S0002-9947-1958-0112932-2, Trans. Am. Math. Soc. 88 430-466 (1958). (1958) MR0112932DOI10.1090/S0002-9947-1958-0112932-2
- Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series 30 Princeton University Press, Princeton (1970). (1970) Zbl0207.13501MR0290095
- Taylor, M. E., Pseudodifferential Operators and Nonlinear PDE, Progress in Mathematics 100 Birkhäuser, Boston (1991). (1991) Zbl0746.35062MR1121019
- Torchinsky, A., Real-Variable Methods in Harmonic Analysis, Pure and Applied Mathematics 123 Academic Press, Orlando (1986). (1986) Zbl0621.42001MR0869816
- Torchinsky, A., Wang, S., 10.4064/cm-60-61-1-235-243, Colloq. Math. 60/61 235-243 (1990). (1990) Zbl0731.42019MR1096373DOI10.4064/cm-60-61-1-235-243
- Vargas, A. M., 10.1112/jlms/54.2.297, J. Lond. Math. Soc., II. Ser. 54 297-310 (1996). (1996) Zbl0884.42011MR1405057DOI10.1112/jlms/54.2.297
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.