Partitioning bases of topological spaces
Dániel T. Soukup; Lajos Soukup
Commentationes Mathematicae Universitatis Carolinae (2014)
- Volume: 55, Issue: 4, page 537-566
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topSoukup, Dániel T., and Soukup, Lajos. "Partitioning bases of topological spaces." Commentationes Mathematicae Universitatis Carolinae 55.4 (2014): 537-566. <http://eudml.org/doc/262010>.
@article{Soukup2014,
abstract = {We investigate whether an arbitrary base for a dense-in-itself topological space can be partitioned into two bases. We prove that every base for a $T_3$ Lindelöf topology can be partitioned into two bases while there exists a consistent example of a first-countable, 0-dimensional, Hausdorff space of size $2^\omega $ and weight $\omega _1$ which admits a point countable base without a partition to two bases.},
author = {Soukup, Dániel T., Soukup, Lajos},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {base; resolvable; partition; base; resolvable; partition},
language = {eng},
number = {4},
pages = {537-566},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Partitioning bases of topological spaces},
url = {http://eudml.org/doc/262010},
volume = {55},
year = {2014},
}
TY - JOUR
AU - Soukup, Dániel T.
AU - Soukup, Lajos
TI - Partitioning bases of topological spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2014
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 55
IS - 4
SP - 537
EP - 566
AB - We investigate whether an arbitrary base for a dense-in-itself topological space can be partitioned into two bases. We prove that every base for a $T_3$ Lindelöf topology can be partitioned into two bases while there exists a consistent example of a first-countable, 0-dimensional, Hausdorff space of size $2^\omega $ and weight $\omega _1$ which admits a point countable base without a partition to two bases.
LA - eng
KW - base; resolvable; partition; base; resolvable; partition
UR - http://eudml.org/doc/262010
ER -
References
top- Hajnal A., Hamburger P., Set Theory, London Mathematical Society Student Texts, 48, Cambridge University Press, Cambridge, 1999, ISBN 0 521 59667 X. Zbl0934.03057MR1728582
- Stone A.H., 10.1112/S002557930000259X, Mathematika 15 (1968), 217–222. Zbl0164.33203MR0237386DOI10.1112/S002557930000259X
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.