Fixed point results on a metric space endowed with a finite number of graphs and applications

Hajer Argoubi; Bessem Samet; Mihai Turinici

Czechoslovak Mathematical Journal (2014)

  • Volume: 64, Issue: 1, page 241-250
  • ISSN: 0011-4642

Abstract

top
In this paper, we consider self-mappings defined on a metric space endowed with a finite number of graphs. Under certain conditions imposed on the graphs, we establish a new fixed point theorem for such mappings. The obtained result extends, generalizes and improves many existing contributions in the literature including standard fixed point theorems, fixed point theorems on a metric space endowed with a partial order and fixed point theorems for cyclic mappings.

How to cite

top

Argoubi, Hajer, Samet, Bessem, and Turinici, Mihai. "Fixed point results on a metric space endowed with a finite number of graphs and applications." Czechoslovak Mathematical Journal 64.1 (2014): 241-250. <http://eudml.org/doc/262012>.

@article{Argoubi2014,
abstract = {In this paper, we consider self-mappings defined on a metric space endowed with a finite number of graphs. Under certain conditions imposed on the graphs, we establish a new fixed point theorem for such mappings. The obtained result extends, generalizes and improves many existing contributions in the literature including standard fixed point theorems, fixed point theorems on a metric space endowed with a partial order and fixed point theorems for cyclic mappings.},
author = {Argoubi, Hajer, Samet, Bessem, Turinici, Mihai},
journal = {Czechoslovak Mathematical Journal},
keywords = {fixed point; graph; metric space; order; cyclic map; fixed point; graph; metric space; order; cyclic map},
language = {eng},
number = {1},
pages = {241-250},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Fixed point results on a metric space endowed with a finite number of graphs and applications},
url = {http://eudml.org/doc/262012},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Argoubi, Hajer
AU - Samet, Bessem
AU - Turinici, Mihai
TI - Fixed point results on a metric space endowed with a finite number of graphs and applications
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 1
SP - 241
EP - 250
AB - In this paper, we consider self-mappings defined on a metric space endowed with a finite number of graphs. Under certain conditions imposed on the graphs, we establish a new fixed point theorem for such mappings. The obtained result extends, generalizes and improves many existing contributions in the literature including standard fixed point theorems, fixed point theorems on a metric space endowed with a partial order and fixed point theorems for cyclic mappings.
LA - eng
KW - fixed point; graph; metric space; order; cyclic map; fixed point; graph; metric space; order; cyclic map
UR - http://eudml.org/doc/262012
ER -

References

top
  1. Agarwal, R. P., El-Gebeily, M. A., O'Regan, D., 10.1080/00036810701556151, Appl. Anal. 87 (2008), 109-116. (2008) Zbl1140.47042MR2381749DOI10.1080/00036810701556151
  2. Aleomraninejad, S. M. A., Rezapour, S., Shahzad, N., Some fixed point results on a metric space with a graph, Topology Appl. 159 (2012), 659-663. (2012) Zbl1237.54042MR2868864
  3. Altun, I., Simsek, H., Some fixed point theorems on ordered metric spaces and application, Fixed Point Theory Appl. (2010), Article ID 621469, 17 pages. (2010) Zbl1197.54053MR2591832
  4. Beg, I., Butt, A. R., Radojević, S., 10.1016/j.camwa.2010.06.003, Comput. Math. Appl. 60 (2010), 1214-1219. (2010) Zbl1201.54029MR2672921DOI10.1016/j.camwa.2010.06.003
  5. Bhaskar, T. G., Lakshmikantham, V., Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), 1379-1393. (2006) Zbl1106.47047MR2245511
  6. Boyd, D. W., Wong, J. S. W., 10.1090/S0002-9939-1969-0239559-9, Proc. Am. Math. Soc. 20 (1969), 458-464. (1969) Zbl0175.44903MR0239559DOI10.1090/S0002-9939-1969-0239559-9
  7. Chatterjea, S. K., Fixed-point theorems, C. R. Acad. Bulg. Sci. 25 (1972), 727-730. (1972) Zbl0274.54033MR0324493
  8. 'Cirić, Lj. B., Generalized contractions and fixed-point theorems, Publ. Inst. Math., Nouv. Sér. 12 (1971), 19-26. (1971) Zbl0234.54029MR0309092
  9. Ćirić, Lj. B., Cakić, N., Rajović, M., Ume, J. S., Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed Point Theory Appl. (2008), Article ID 131294, 11 pages. (2008) Zbl1158.54019MR2481377
  10. Espínola, R., Kirk, W. A., 10.1016/j.topol.2005.03.001, Topology Appl. 153 (2006), 1046-1055. (2006) Zbl1095.54012MR2203018DOI10.1016/j.topol.2005.03.001
  11. Hardy, G. E., Rogers, T. D., 10.4153/CMB-1973-036-0, Can. Math. Bull. 16 (1973), 201-206. (1973) Zbl0266.54015MR0324495DOI10.4153/CMB-1973-036-0
  12. Harjani, J., Sadarangani, K., Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal. 71 (2009), 3403-3410. (2009) Zbl1221.54058MR2532760
  13. Jachymski, J., 10.1090/S0002-9939-07-09110-1, Proc. Am. Math. Soc. 136 (2008), 1359-1373. (2008) Zbl1139.47040MR2367109DOI10.1090/S0002-9939-07-09110-1
  14. Kannan, R., On certain sets and fixed point theorems, Rev. Roum. Math. Pures Appl. 14 (1969), 51-54. (1969) Zbl0188.55403MR0243507
  15. Kirk, W. A., Srinivasan, P. S., Veeramani, P., Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory 4 (2003), 79-89. (2003) Zbl1052.54032MR2031823
  16. Nieto, J. J., Rodríguez-López, R., 10.1007/s11083-005-9018-5, Order 22 (2005), 223-239. (2005) Zbl1095.47013MR2212687DOI10.1007/s11083-005-9018-5
  17. Nieto, J. J., Rodríguez-López, R., 10.1007/s10114-005-0769-0, Acta Math. Sin., Engl. Ser. 23 (2007), 2205-2212. (2007) Zbl1140.47045MR2357454DOI10.1007/s10114-005-0769-0
  18. Petruşel, A., Rus, I. A., 10.1090/S0002-9939-05-07982-7, Proc. Am. Math. Soc. 134 (2006), 411-418. (2006) Zbl1086.47026MR2176009DOI10.1090/S0002-9939-05-07982-7
  19. Ran, A. C. M., Reurings, M. C. B., 10.1090/S0002-9939-03-07220-4, Proc. Am. Math. Soc. 132 (2004), 1435-1443. (2004) Zbl1060.47056MR2053350DOI10.1090/S0002-9939-03-07220-4
  20. Samet, B., 10.1016/j.na.2010.02.026, Nonlinear Anal. 72 (2010), 4508-4517. (2010) Zbl1264.54068MR2639199DOI10.1016/j.na.2010.02.026
  21. Samet, B., Vetro, C., Coupled fixed point theorems for multi-valued nonlinear contraction mappings in partially ordered metric spaces, Nonlinear Anal. 74 (2011), 4260-4268. (2011) Zbl1216.54021MR2803028
  22. Suzuki, T., 10.1090/S0002-9939-07-09055-7, Proc. Am. Math. Soc. 136 (2008), 1861-1869. (2008) Zbl1145.54026MR2373618DOI10.1090/S0002-9939-07-09055-7
  23. Turinici, M., 10.1016/0022-247X(86)90251-9, J. Math. Anal. Appl. 117 (1986), 100-127. (1986) Zbl0613.47037MR0843008DOI10.1016/0022-247X(86)90251-9

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.