Fixed point results on a metric space endowed with a finite number of graphs and applications
Hajer Argoubi; Bessem Samet; Mihai Turinici
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 1, page 241-250
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topArgoubi, Hajer, Samet, Bessem, and Turinici, Mihai. "Fixed point results on a metric space endowed with a finite number of graphs and applications." Czechoslovak Mathematical Journal 64.1 (2014): 241-250. <http://eudml.org/doc/262012>.
@article{Argoubi2014,
abstract = {In this paper, we consider self-mappings defined on a metric space endowed with a finite number of graphs. Under certain conditions imposed on the graphs, we establish a new fixed point theorem for such mappings. The obtained result extends, generalizes and improves many existing contributions in the literature including standard fixed point theorems, fixed point theorems on a metric space endowed with a partial order and fixed point theorems for cyclic mappings.},
author = {Argoubi, Hajer, Samet, Bessem, Turinici, Mihai},
journal = {Czechoslovak Mathematical Journal},
keywords = {fixed point; graph; metric space; order; cyclic map; fixed point; graph; metric space; order; cyclic map},
language = {eng},
number = {1},
pages = {241-250},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Fixed point results on a metric space endowed with a finite number of graphs and applications},
url = {http://eudml.org/doc/262012},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Argoubi, Hajer
AU - Samet, Bessem
AU - Turinici, Mihai
TI - Fixed point results on a metric space endowed with a finite number of graphs and applications
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 1
SP - 241
EP - 250
AB - In this paper, we consider self-mappings defined on a metric space endowed with a finite number of graphs. Under certain conditions imposed on the graphs, we establish a new fixed point theorem for such mappings. The obtained result extends, generalizes and improves many existing contributions in the literature including standard fixed point theorems, fixed point theorems on a metric space endowed with a partial order and fixed point theorems for cyclic mappings.
LA - eng
KW - fixed point; graph; metric space; order; cyclic map; fixed point; graph; metric space; order; cyclic map
UR - http://eudml.org/doc/262012
ER -
References
top- Agarwal, R. P., El-Gebeily, M. A., O'Regan, D., 10.1080/00036810701556151, Appl. Anal. 87 (2008), 109-116. (2008) Zbl1140.47042MR2381749DOI10.1080/00036810701556151
- Aleomraninejad, S. M. A., Rezapour, S., Shahzad, N., Some fixed point results on a metric space with a graph, Topology Appl. 159 (2012), 659-663. (2012) Zbl1237.54042MR2868864
- Altun, I., Simsek, H., Some fixed point theorems on ordered metric spaces and application, Fixed Point Theory Appl. (2010), Article ID 621469, 17 pages. (2010) Zbl1197.54053MR2591832
- Beg, I., Butt, A. R., Radojević, S., 10.1016/j.camwa.2010.06.003, Comput. Math. Appl. 60 (2010), 1214-1219. (2010) Zbl1201.54029MR2672921DOI10.1016/j.camwa.2010.06.003
- Bhaskar, T. G., Lakshmikantham, V., Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), 1379-1393. (2006) Zbl1106.47047MR2245511
- Boyd, D. W., Wong, J. S. W., 10.1090/S0002-9939-1969-0239559-9, Proc. Am. Math. Soc. 20 (1969), 458-464. (1969) Zbl0175.44903MR0239559DOI10.1090/S0002-9939-1969-0239559-9
- Chatterjea, S. K., Fixed-point theorems, C. R. Acad. Bulg. Sci. 25 (1972), 727-730. (1972) Zbl0274.54033MR0324493
- 'Cirić, Lj. B., Generalized contractions and fixed-point theorems, Publ. Inst. Math., Nouv. Sér. 12 (1971), 19-26. (1971) Zbl0234.54029MR0309092
- Ćirić, Lj. B., Cakić, N., Rajović, M., Ume, J. S., Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed Point Theory Appl. (2008), Article ID 131294, 11 pages. (2008) Zbl1158.54019MR2481377
- Espínola, R., Kirk, W. A., 10.1016/j.topol.2005.03.001, Topology Appl. 153 (2006), 1046-1055. (2006) Zbl1095.54012MR2203018DOI10.1016/j.topol.2005.03.001
- Hardy, G. E., Rogers, T. D., 10.4153/CMB-1973-036-0, Can. Math. Bull. 16 (1973), 201-206. (1973) Zbl0266.54015MR0324495DOI10.4153/CMB-1973-036-0
- Harjani, J., Sadarangani, K., Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal. 71 (2009), 3403-3410. (2009) Zbl1221.54058MR2532760
- Jachymski, J., 10.1090/S0002-9939-07-09110-1, Proc. Am. Math. Soc. 136 (2008), 1359-1373. (2008) Zbl1139.47040MR2367109DOI10.1090/S0002-9939-07-09110-1
- Kannan, R., On certain sets and fixed point theorems, Rev. Roum. Math. Pures Appl. 14 (1969), 51-54. (1969) Zbl0188.55403MR0243507
- Kirk, W. A., Srinivasan, P. S., Veeramani, P., Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory 4 (2003), 79-89. (2003) Zbl1052.54032MR2031823
- Nieto, J. J., Rodríguez-López, R., 10.1007/s11083-005-9018-5, Order 22 (2005), 223-239. (2005) Zbl1095.47013MR2212687DOI10.1007/s11083-005-9018-5
- Nieto, J. J., Rodríguez-López, R., 10.1007/s10114-005-0769-0, Acta Math. Sin., Engl. Ser. 23 (2007), 2205-2212. (2007) Zbl1140.47045MR2357454DOI10.1007/s10114-005-0769-0
- Petruşel, A., Rus, I. A., 10.1090/S0002-9939-05-07982-7, Proc. Am. Math. Soc. 134 (2006), 411-418. (2006) Zbl1086.47026MR2176009DOI10.1090/S0002-9939-05-07982-7
- Ran, A. C. M., Reurings, M. C. B., 10.1090/S0002-9939-03-07220-4, Proc. Am. Math. Soc. 132 (2004), 1435-1443. (2004) Zbl1060.47056MR2053350DOI10.1090/S0002-9939-03-07220-4
- Samet, B., 10.1016/j.na.2010.02.026, Nonlinear Anal. 72 (2010), 4508-4517. (2010) Zbl1264.54068MR2639199DOI10.1016/j.na.2010.02.026
- Samet, B., Vetro, C., Coupled fixed point theorems for multi-valued nonlinear contraction mappings in partially ordered metric spaces, Nonlinear Anal. 74 (2011), 4260-4268. (2011) Zbl1216.54021MR2803028
- Suzuki, T., 10.1090/S0002-9939-07-09055-7, Proc. Am. Math. Soc. 136 (2008), 1861-1869. (2008) Zbl1145.54026MR2373618DOI10.1090/S0002-9939-07-09055-7
- Turinici, M., 10.1016/0022-247X(86)90251-9, J. Math. Anal. Appl. 117 (1986), 100-127. (1986) Zbl0613.47037MR0843008DOI10.1016/0022-247X(86)90251-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.