On the signless Laplacian spectral characterization of the line graphs of -shape trees
Guoping Wang; Guangquan Guo; Li Min
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 2, page 311-325
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topWang, Guoping, Guo, Guangquan, and Min, Li. "On the signless Laplacian spectral characterization of the line graphs of $T$-shape trees." Czechoslovak Mathematical Journal 64.2 (2014): 311-325. <http://eudml.org/doc/262019>.
@article{Wang2014,
abstract = {A graph is determined by its signless Laplacian spectrum if no other non-isomorphic graph has the same signless Laplacian spectrum (simply $G$ is $DQS$). Let $T(a,b,c)$ denote the $T$-shape tree obtained by identifying the end vertices of three paths $P_\{a+2\}$, $P_\{b+2\}$ and $P_\{c+2\}$. We prove that its all line graphs $\mathcal \{L\}(T(a,b,c))$ except $\mathcal \{L\}(T(t,t,2t+1))$ ($t\ge 1$) are $DQS$, and determine the graphs which have the same signless Laplacian spectrum as $\mathcal \{L\}(T(t,t,2t+1))$. Let $\mu _1(G)$ be the maximum signless Laplacian eigenvalue of the graph $G$. We give the limit of $\mu _1(\mathcal \{L\}(T(a,b,c)))$, too.},
author = {Wang, Guoping, Guo, Guangquan, Min, Li},
journal = {Czechoslovak Mathematical Journal},
keywords = {signless Laplacian spectrum; cospectral graphs; $T$-shape tree; signless Laplacian spectrum; cospectral graphs; -shape tree},
language = {eng},
number = {2},
pages = {311-325},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the signless Laplacian spectral characterization of the line graphs of $T$-shape trees},
url = {http://eudml.org/doc/262019},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Wang, Guoping
AU - Guo, Guangquan
AU - Min, Li
TI - On the signless Laplacian spectral characterization of the line graphs of $T$-shape trees
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 2
SP - 311
EP - 325
AB - A graph is determined by its signless Laplacian spectrum if no other non-isomorphic graph has the same signless Laplacian spectrum (simply $G$ is $DQS$). Let $T(a,b,c)$ denote the $T$-shape tree obtained by identifying the end vertices of three paths $P_{a+2}$, $P_{b+2}$ and $P_{c+2}$. We prove that its all line graphs $\mathcal {L}(T(a,b,c))$ except $\mathcal {L}(T(t,t,2t+1))$ ($t\ge 1$) are $DQS$, and determine the graphs which have the same signless Laplacian spectrum as $\mathcal {L}(T(t,t,2t+1))$. Let $\mu _1(G)$ be the maximum signless Laplacian eigenvalue of the graph $G$. We give the limit of $\mu _1(\mathcal {L}(T(a,b,c)))$, too.
LA - eng
KW - signless Laplacian spectrum; cospectral graphs; $T$-shape tree; signless Laplacian spectrum; cospectral graphs; -shape tree
UR - http://eudml.org/doc/262019
ER -
References
top- Cvetković, D. M., Doob, M., Sachs, H., Spectra of Graphs. Theory and Applications, 3rd rev. a. enl. J. A. Barth, Leipzig (1995). (1995) Zbl0824.05046MR1324340
- Cvetković, D., Rowlinson, P., Simić, S. K., 10.1016/j.laa.2007.01.009, Linear Algebra Appl. 423 (2007), 155-171. (2007) MR2312332DOI10.1016/j.laa.2007.01.009
- Cvetković, D., Rowlinson, P., Simić, S. K., 10.2298/PIM0795011C, Publ. Inst. Math., Nouv. Sér. 81 (2007), 11-27. (2007) Zbl1164.05038MR2401311DOI10.2298/PIM0795011C
- Cvetković, D., Simić, S. K., Towards a spectral theory of graphs based on signless Laplacian. I, Publ. Inst. Math., Nouv. Sér. 85 (2009), 19-33. (2009) MR2536686
- Cvetković, D., Simić, S. K., 10.1016/j.laa.2009.05.020, Linear Algebra Appl. 432 (2010), 2257-2272. (2010) MR2599858DOI10.1016/j.laa.2009.05.020
- Ghareghani, N., Omidi, G. R., Tayfeh-Rezaie, B., Spectral characterization of graphs with index at most , Linear Algebra Appl. 420 (2007), 483-489. (2007) Zbl1107.05058MR2278224
- Omidi, G. R., 10.1016/j.laa.2009.05.035, Linear Algebra Appl. 431 (2009), 1607-1615. (2009) MR2555062DOI10.1016/j.laa.2009.05.035
- Ramezani, F., Broojerdian, N., Tayfeh-Rezaie, B., A note on the spectral characterization of -graphs, Linear Algebra Appl. 431 (2009), 626-632. (2009) Zbl1203.05098MR2535538
- Dam, E. R. van, Haemers, W. H., Which graphs are determined by their spectrum?, Linear Algebra Appl. Special issue on the Combinatorial Matrix Theory Conference (Pohang, 2002) 373 (2003), 241-272. (2003) MR2022290
- Dam, E. R. van, Haemers, W. H., 10.1016/j.disc.2008.08.019, Discrete Math. 309 (2009), 576-586. (2009) MR2499010DOI10.1016/j.disc.2008.08.019
- Wang, J. F., Huang, Q. X., Belardo, F., Marzi, E. M. L., 10.1016/j.disc.2010.01.021, Discrete Math. 310 (2010), 1845-1855. (2010) Zbl1231.05174MR2629903DOI10.1016/j.disc.2010.01.021
- Wang, W., Xu, C. X., 10.1016/j.laa.2005.10.031, Linear Algebra Appl. 414 (2006), 492-501. (2006) Zbl1086.05050MR2214401DOI10.1016/j.laa.2005.10.031
- Wang, W., Xu, C. X., Note: The -shape tree is determined by its Laplacian spectrum, Linear Algebra Appl. 419 (2006), 78-81. (2006) MR2263111
- Zhang, Y. P., Liu, X. G., Zhang, B. Y., Yong, X. R., 10.1016/j.disc.2008.09.052, Discrete Math. 309 (2009), 3364-3369. (2009) Zbl1182.05084MR2526754DOI10.1016/j.disc.2008.09.052
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.