On the signless Laplacian spectral characterization of the line graphs of T -shape trees

Guoping Wang; Guangquan Guo; Li Min

Czechoslovak Mathematical Journal (2014)

  • Volume: 64, Issue: 2, page 311-325
  • ISSN: 0011-4642

Abstract

top
A graph is determined by its signless Laplacian spectrum if no other non-isomorphic graph has the same signless Laplacian spectrum (simply G is D Q S ). Let T ( a , b , c ) denote the T -shape tree obtained by identifying the end vertices of three paths P a + 2 , P b + 2 and P c + 2 . We prove that its all line graphs ( T ( a , b , c ) ) except ( T ( t , t , 2 t + 1 ) ) ( t 1 ) are D Q S , and determine the graphs which have the same signless Laplacian spectrum as ( T ( t , t , 2 t + 1 ) ) . Let μ 1 ( G ) be the maximum signless Laplacian eigenvalue of the graph G . We give the limit of μ 1 ( ( T ( a , b , c ) ) ) , too.

How to cite

top

Wang, Guoping, Guo, Guangquan, and Min, Li. "On the signless Laplacian spectral characterization of the line graphs of $T$-shape trees." Czechoslovak Mathematical Journal 64.2 (2014): 311-325. <http://eudml.org/doc/262019>.

@article{Wang2014,
abstract = {A graph is determined by its signless Laplacian spectrum if no other non-isomorphic graph has the same signless Laplacian spectrum (simply $G$ is $DQS$). Let $T(a,b,c)$ denote the $T$-shape tree obtained by identifying the end vertices of three paths $P_\{a+2\}$, $P_\{b+2\}$ and $P_\{c+2\}$. We prove that its all line graphs $\mathcal \{L\}(T(a,b,c))$ except $\mathcal \{L\}(T(t,t,2t+1))$ ($t\ge 1$) are $DQS$, and determine the graphs which have the same signless Laplacian spectrum as $\mathcal \{L\}(T(t,t,2t+1))$. Let $\mu _1(G)$ be the maximum signless Laplacian eigenvalue of the graph $G$. We give the limit of $\mu _1(\mathcal \{L\}(T(a,b,c)))$, too.},
author = {Wang, Guoping, Guo, Guangquan, Min, Li},
journal = {Czechoslovak Mathematical Journal},
keywords = {signless Laplacian spectrum; cospectral graphs; $T$-shape tree; signless Laplacian spectrum; cospectral graphs; -shape tree},
language = {eng},
number = {2},
pages = {311-325},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the signless Laplacian spectral characterization of the line graphs of $T$-shape trees},
url = {http://eudml.org/doc/262019},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Wang, Guoping
AU - Guo, Guangquan
AU - Min, Li
TI - On the signless Laplacian spectral characterization of the line graphs of $T$-shape trees
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 2
SP - 311
EP - 325
AB - A graph is determined by its signless Laplacian spectrum if no other non-isomorphic graph has the same signless Laplacian spectrum (simply $G$ is $DQS$). Let $T(a,b,c)$ denote the $T$-shape tree obtained by identifying the end vertices of three paths $P_{a+2}$, $P_{b+2}$ and $P_{c+2}$. We prove that its all line graphs $\mathcal {L}(T(a,b,c))$ except $\mathcal {L}(T(t,t,2t+1))$ ($t\ge 1$) are $DQS$, and determine the graphs which have the same signless Laplacian spectrum as $\mathcal {L}(T(t,t,2t+1))$. Let $\mu _1(G)$ be the maximum signless Laplacian eigenvalue of the graph $G$. We give the limit of $\mu _1(\mathcal {L}(T(a,b,c)))$, too.
LA - eng
KW - signless Laplacian spectrum; cospectral graphs; $T$-shape tree; signless Laplacian spectrum; cospectral graphs; -shape tree
UR - http://eudml.org/doc/262019
ER -

References

top
  1. Cvetković, D. M., Doob, M., Sachs, H., Spectra of Graphs. Theory and Applications, 3rd rev. a. enl. J. A. Barth, Leipzig (1995). (1995) Zbl0824.05046MR1324340
  2. Cvetković, D., Rowlinson, P., Simić, S. K., 10.1016/j.laa.2007.01.009, Linear Algebra Appl. 423 (2007), 155-171. (2007) MR2312332DOI10.1016/j.laa.2007.01.009
  3. Cvetković, D., Rowlinson, P., Simić, S. K., 10.2298/PIM0795011C, Publ. Inst. Math., Nouv. Sér. 81 (2007), 11-27. (2007) Zbl1164.05038MR2401311DOI10.2298/PIM0795011C
  4. Cvetković, D., Simić, S. K., Towards a spectral theory of graphs based on signless Laplacian. I, Publ. Inst. Math., Nouv. Sér. 85 (2009), 19-33. (2009) MR2536686
  5. Cvetković, D., Simić, S. K., 10.1016/j.laa.2009.05.020, Linear Algebra Appl. 432 (2010), 2257-2272. (2010) MR2599858DOI10.1016/j.laa.2009.05.020
  6. Ghareghani, N., Omidi, G. R., Tayfeh-Rezaie, B., Spectral characterization of graphs with index at most 2 + 5 , Linear Algebra Appl. 420 (2007), 483-489. (2007) Zbl1107.05058MR2278224
  7. Omidi, G. R., 10.1016/j.laa.2009.05.035, Linear Algebra Appl. 431 (2009), 1607-1615. (2009) MR2555062DOI10.1016/j.laa.2009.05.035
  8. Ramezani, F., Broojerdian, N., Tayfeh-Rezaie, B., A note on the spectral characterization of θ -graphs, Linear Algebra Appl. 431 (2009), 626-632. (2009) Zbl1203.05098MR2535538
  9. Dam, E. R. van, Haemers, W. H., Which graphs are determined by their spectrum?, Linear Algebra Appl. Special issue on the Combinatorial Matrix Theory Conference (Pohang, 2002) 373 (2003), 241-272. (2003) MR2022290
  10. Dam, E. R. van, Haemers, W. H., 10.1016/j.disc.2008.08.019, Discrete Math. 309 (2009), 576-586. (2009) MR2499010DOI10.1016/j.disc.2008.08.019
  11. Wang, J. F., Huang, Q. X., Belardo, F., Marzi, E. M. L., 10.1016/j.disc.2010.01.021, Discrete Math. 310 (2010), 1845-1855. (2010) Zbl1231.05174MR2629903DOI10.1016/j.disc.2010.01.021
  12. Wang, W., Xu, C. X., 10.1016/j.laa.2005.10.031, Linear Algebra Appl. 414 (2006), 492-501. (2006) Zbl1086.05050MR2214401DOI10.1016/j.laa.2005.10.031
  13. Wang, W., Xu, C. X., Note: The T -shape tree is determined by its Laplacian spectrum, Linear Algebra Appl. 419 (2006), 78-81. (2006) MR2263111
  14. Zhang, Y. P., Liu, X. G., Zhang, B. Y., Yong, X. R., 10.1016/j.disc.2008.09.052, Discrete Math. 309 (2009), 3364-3369. (2009) Zbl1182.05084MR2526754DOI10.1016/j.disc.2008.09.052

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.