An algorithm based on rolling to generate smooth interpolating curves on ellipsoids
Krzysztof Krakowski; Fátima Silva Leite
Kybernetika (2014)
- Volume: 50, Issue: 4, page 544-562
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topReferences
top- Agrachev, A., Sachkov, Y., Control Theory from the Geometric Viewpoint., In: Encyclopaedia of Mathematical Sciences 87 (2004), Springer-Verlag. Zbl1062.93001MR2062547
- Camarinha, M., The Geometry of Cubic Polynomials on Riemannian Manifolds., PhD. Thesis, Departamento de Matemática, Universidade de Coimbra 1996.
- Crouch, P., Kun, G., Leite, F. S., 10.1023/A:1021770717822, J. Dyn. Control Syst. 5 (1999), 3, 397-429. Zbl0961.53027MR1706785DOI10.1023/A:1021770717822
- Crouch, P, Leite, F. S., Geometry and the dynamic interpolation problem., In: Proc. American Control Conference Boston 1991, pp. 1131-1137.
- Crouch, P., Leite, F. S., 10.1007/BF02254638, J. Dyn. Control Syst. 1 (1995), 2, 177-202. Zbl0946.58018MR1333770DOI10.1007/BF02254638
- Fedorov, Y. N., Jovanović, B., 10.1007/s00332-004-0603-3, J. Nonlinear Sci. 14 (2004), 4, 341-381. Zbl1125.37045MR2076030DOI10.1007/s00332-004-0603-3
- Giambó, R., Giannoni, F., Piccione, P., Fitting smooth paths to spherical data., IMA J. Math. Control Inform. 19 (2002), 445-460. MR1949013
- Hüper, K., Kleinsteuber, M., Leite, F. S., Rolling Stiefel manifolds., Int. J. Systems Sci. 39 (2008), 8, 881-887. Zbl1168.53007MR2437853
- Hüper, K., Krakowski, K. A., Leite, F. S., Rolling Maps in a Riemannian Framework., In: Mathematical Papers in Honour of Fátima Silva Leite, Textos de Matemática 43, Department of Mathematics, University of Coimbra 2011, pp. 15-30. Zbl1254.53018MR2894254
- Hüper, K., Leite, F. S., Smooth interpolating curves with applications to path planning., In: 10th IEEE Mediterranean Conference on Control and Automation (MED 2002), Lisbon 2002.
- Hüper, K., Leite, F. S., 10.1007/s10883-007-9027-3, J. Dyn. Control Syst. 13 (2007), 4, 467-502. MR2350231DOI10.1007/s10883-007-9027-3
- Jupp, P., Kent, J., 10.2307/2347843, Appl. Statist. 36 (1987), 34-46. Zbl0613.62086MR0887825DOI10.2307/2347843
- Jurdjevic, V., Zimmerman, J., Rolling problems on spaces of constant curvature., In: Lagrangian and Hamiltonian methods for nonlinear control 2006, Proc. 3rd IFAC Workshop 2006 (F. Bullo and K. Fujimoto, eds.), Nagoya 2007, Lect. Notes Control Inform. Sciences, Springer, pp. 221-231. Zbl1136.49028MR2376942
- Krakowski, K., Leite, F. S., Smooth interpolation on ellipsoids via rolling motions., In: PhysCon 2013, San Luis Potosí, Mexico 2013.
- Krakowski, K. A., Leite, F. S., Why controllability of rolling may fail: a few illustrative examples., In: Pré-Publicações do Departamento de Matemática, No. 12-26, University of Coimbra 2012, pp. 1-30.
- Lee, J. M., Riemannian Manifolds: An Introduction to Curvature., In? Graduate Texts in Mathematics No. 176, Springer-Verlag, New York 1997. Zbl0905.53001MR1468735
- Machado, L., Leite, F. S., Krakowski, K., 10.1007/s10883-010-9080-1, J. Dyn. Control Syst. 16 (2010), 1, 121-148. Zbl1203.65028MR2580471DOI10.1007/s10883-010-9080-1
- Noakes, L., Heinzinger, G., Paden, B., 10.1093/imamci/6.4.465, IMA J. Math. Control Inform. 6 (1989), 465-473. Zbl0698.58018MR1036158DOI10.1093/imamci/6.4.465
- Nomizu, K., 10.2748/tmj/1178229921, Tôhoku Math. J. 30 (1978), 623-637. Zbl0395.53005MR0516894DOI10.2748/tmj/1178229921
- Park, F., Ravani, B., Optimal control of the sphere rolling on ., ASME J. Mech. Design 117 (1995), 36-40.
- Samir, C., Absil, P.-A., Srivastava, A., Klassen, E., 10.1007/s10208-011-9091-7, Found. Comput. Math. 12 (2012), 49-73. Zbl1245.65017MR2886156DOI10.1007/s10208-011-9091-7
- Sharpe, R. W., Differential Geometry: Cartan's Generalization of Klein's Erlangen Program., In: Graduate Texts in Mathematics, No. 166. Springer-Verlag, New York 1997. Zbl0876.53001MR1453120
- Zimmerman, J., 10.1007/s00498-004-0143-2, Math. Control Signals Systems 17 (2005), 1, 14-37. Zbl1064.49021MR2121282DOI10.1007/s00498-004-0143-2