Existence of solutions for a class of second-order -Laplacian systems with impulsive effects
Applications of Mathematics (2014)
- Volume: 59, Issue: 5, page 543-570
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topChen, Peng, and Tang, Xianhua. "Existence of solutions for a class of second-order $p$-Laplacian systems with impulsive effects." Applications of Mathematics 59.5 (2014): 543-570. <http://eudml.org/doc/262041>.
@article{Chen2014,
abstract = {The purpose of this paper is to study the existence and multiplicity of a periodic solution for the non-autonomous second-order system \begin\{gather\} \frac\{\{\rm d\}\}\{\{\rm d\}t\}(|\dot\{u\}(t)|^\{p-2\}\dot\{u\}(t)) =\nabla F(t, u(t)),\quad \text\{\rm a.e.\}\ t\in [0,T],\nonumber \\ u(0)-u(T)=\dot\{u\}(0)-\dot\{u\}(T)=0,\nonumber \\ \Delta \dot\{u\}^i(t\_\{j\})=\dot\{u\}^i(t\_j^+)-\dot\{u\}^i(t\_j^-)=I\_\{ij\}(u^i(t\_j)),\ i = 1, 2,\dots , N;\ j = 1, 2,\dots ,m.\nonumber \end\{gather\}
By using the least action principle and the saddle point theorem, some new existence theorems are obtained for second-order $p$-Laplacian systems with or without impulse under weak sublinear growth conditions, improving some existing results in the literature.},
author = {Chen, Peng, Tang, Xianhua},
journal = {Applications of Mathematics},
keywords = {second-order $p$-Laplacian Hamiltonian systems; impulsive effect; critical point theory; second-order $p$-Laplacian Hamiltonian systems; impulsive effect; critical point theory},
language = {eng},
number = {5},
pages = {543-570},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of solutions for a class of second-order $p$-Laplacian systems with impulsive effects},
url = {http://eudml.org/doc/262041},
volume = {59},
year = {2014},
}
TY - JOUR
AU - Chen, Peng
AU - Tang, Xianhua
TI - Existence of solutions for a class of second-order $p$-Laplacian systems with impulsive effects
JO - Applications of Mathematics
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 5
SP - 543
EP - 570
AB - The purpose of this paper is to study the existence and multiplicity of a periodic solution for the non-autonomous second-order system \begin{gather} \frac{{\rm d}}{{\rm d}t}(|\dot{u}(t)|^{p-2}\dot{u}(t)) =\nabla F(t, u(t)),\quad \text{\rm a.e.}\ t\in [0,T],\nonumber \\ u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0,\nonumber \\ \Delta \dot{u}^i(t_{j})=\dot{u}^i(t_j^+)-\dot{u}^i(t_j^-)=I_{ij}(u^i(t_j)),\ i = 1, 2,\dots , N;\ j = 1, 2,\dots ,m.\nonumber \end{gather}
By using the least action principle and the saddle point theorem, some new existence theorems are obtained for second-order $p$-Laplacian systems with or without impulse under weak sublinear growth conditions, improving some existing results in the literature.
LA - eng
KW - second-order $p$-Laplacian Hamiltonian systems; impulsive effect; critical point theory; second-order $p$-Laplacian Hamiltonian systems; impulsive effect; critical point theory
UR - http://eudml.org/doc/262041
ER -
References
top- Agarwal, R. P., O'Regan, D., 10.1016/S0096-3003(99)00074-0, Appl. Math. Comput. 114 (2000), 51-59. (2000) Zbl1047.34008MR1775121DOI10.1016/S0096-3003(99)00074-0
- Berger, M. S., Schechter, M., 10.1016/0001-8708(77)90001-9, Adv. Math. 25 (1977), 97-132. (1977) Zbl0354.47025MR0500336DOI10.1016/0001-8708(77)90001-9
- Chen, P., Tang, X. H., 10.11650/twjm/1500406658, Taiwanese J. Math. 16 (2012), 803-828. (2012) Zbl1251.34044MR2917240DOI10.11650/twjm/1500406658
- Lakshmikantham, V., Baĭnov, D. D., Simeonov, P. S., Theory of Impulsive Differential Equations, Series in Modern Applied Mathematics 6 World Scientific, Singapore (1989). (1989) MR1082551
- Lee, E. K., Lee, Y. H., 10.1016/j.amc.2003.10.013, Appl. Math. Comput. 158 (2004), 745-759. (2004) Zbl1069.34035MR2095700DOI10.1016/j.amc.2003.10.013
- Lin, X. N., Jiang, D. Q., 10.1016/j.jmaa.2005.07.076, J. Math. Anal. Appl. 321 (2006), 501-514. (2006) Zbl1103.34015MR2241134DOI10.1016/j.jmaa.2005.07.076
- Mawhin, J., Semi-coercive monotone variational problems, Bull. Cl. Sci., V. Sér., Acad. R. Belg. 73 (1987), 118-130. (1987) Zbl0647.49007MR0938142
- Mawhin, J., Willem, M., 10.1007/978-1-4757-2061-7, Applied Mathematical Sciences 74 Springer, New York (1989). (1989) Zbl0676.58017MR0982267DOI10.1007/978-1-4757-2061-7
- Mawhin, J., Willem, M., 10.1016/S0294-1449(16)30376-6, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 3 (1986), 431-453. (1986) Zbl0678.35091MR0870864DOI10.1016/S0294-1449(16)30376-6
- Nieto, J. J., O'Regan, D., Variational approach to impulsive differential equations, Nonlinear Anal., Real World Appl. 10 (2009), 680-690. (2009) Zbl1167.34318MR2474254
- Rabinowitz, P. H., 10.1002/cpa.3160330504, Commun. Pure Appl. Math. 33 (1980), 609-633. (1980) Zbl0425.34024MR0586414DOI10.1002/cpa.3160330504
- Rabinowitz, P. H., Minimax methods in critical point theory with applications to differential equations, Reg. Conf. Ser. Math. 65 American Mathematical Society, Providence (1986). (1986) Zbl0609.58002MR0845785
- Samoilenko, A. M., Perestyuk, N. A., Impulsive Differential Equations, Transl. from the Russian. World Scientific Series on Nonlinear Science, Series A. 14. Singapore (1995). (1995) Zbl0837.34003MR1355787
- Sun, J. T., Chen, H. B., Yang, L., 10.1016/j.na.2010.03.035, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73 (2010), 440-449. (2010) Zbl1198.34037MR2650827DOI10.1016/j.na.2010.03.035
- Tang, C. L., 10.1006/jmaa.1995.1044, J. Math. Anal. Appl. 189 (1995), 671-675. (1995) Zbl0824.34043MR1312546DOI10.1006/jmaa.1995.1044
- Tang, C. L., 10.1006/jmaa.1996.0327, J. Math. Anal. Appl. 202 (1996), 465-469. (1996) Zbl0857.34044MR1406241DOI10.1006/jmaa.1996.0327
- Tang, C. L., 10.1090/S0002-9939-98-04706-6, Proc. Am. Math. Soc. 126 (1998), 3263-3270. (1998) MR1476396DOI10.1090/S0002-9939-98-04706-6
- Tang, C. L., Wu, X. P., 10.1006/jmaa.2000.7401, J. Math. Anal. Appl. 259 (2001), 386-397. (2001) Zbl0999.34039MR1842066DOI10.1006/jmaa.2000.7401
- Tang, X. H., Meng, Q., Solutions of a second-order Hamiltonian system with periodic boundary conditions, Nonlinear Anal., Real World Appl. 11 (2010), 3722-3733. (2010) Zbl1223.34024MR2683825
- Willem, M., Forced oscillations of Hamiltonian systems, Publ. Math. Fac. Sci. Besançon, Anal. Non Lineaire Annee 1980-1981, Expose No. 4 French (1981). (1981)
- Wu, X., 10.1016/j.na.2004.05.020, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 58 (2004), 899-907. (2004) Zbl1058.34053MR2086063DOI10.1016/j.na.2004.05.020
- Wu, X. P., Tang, C. L., 10.1006/jmaa.1999.6408, J. Math. Anal. Appl. 236 (1999), 227-235. (1999) Zbl0971.34027MR1704579DOI10.1006/jmaa.1999.6408
- Yang, X. X., Shen, J. H., 10.1016/j.amc.2006.12.085, Appl. Math. Comput. 189 (2007), 1943-1952. (2007) Zbl1125.65074MR2332147DOI10.1016/j.amc.2006.12.085
- Zavalishchin, S. T., Sesekin, A. N., Dynamics Impulse System: Theory and Applications, Mathematics and its Applications 394 Kluwer, Dordrecht (1997). (1997) MR1441079
- Zhao, F., Wu, X., 10.1016/j.jmaa.2004.01.041, J. Math. Anal. Appl. 296 (2004), 422-434. (2004) MR2075174DOI10.1016/j.jmaa.2004.01.041
- Zhao, F., Wu, X., Existence and multiplicity of periodic solution for non-autonomous second-order systems with linear nonlinearity, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 60 (2005), 325-335. (2005) Zbl1087.34022MR2101882
- Zhou, J. W., Li, Y. K., 10.1016/j.na.2009.01.140, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 2856-2865. (2009) Zbl1175.34035MR2532812DOI10.1016/j.na.2009.01.140
- Zhou, J. W., Li, Y. K., 10.1016/j.na.2009.08.041, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 1594-1603. (2010) Zbl1193.34057MR2577560DOI10.1016/j.na.2009.08.041
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.