Existence of solutions for a class of second-order p -Laplacian systems with impulsive effects

Peng Chen; Xianhua Tang

Applications of Mathematics (2014)

  • Volume: 59, Issue: 5, page 543-570
  • ISSN: 0862-7940

Abstract

top
The purpose of this paper is to study the existence and multiplicity of a periodic solution for the non-autonomous second-order system d d t ( | u ˙ ( t ) | p - 2 u ˙ ( t ) ) = F ( t , u ( t ) ) , a.e. t [ 0 , T ] , u ( 0 ) - u ( T ) = u ˙ ( 0 ) - u ˙ ( T ) = 0 , Δ u ˙ i ( t j ) = u ˙ i ( t j + ) - u ˙ i ( t j - ) = I i j ( u i ( t j ) ) , i = 1 , 2 , , N ; j = 1 , 2 , , m . By using the least action principle and the saddle point theorem, some new existence theorems are obtained for second-order p -Laplacian systems with or without impulse under weak sublinear growth conditions, improving some existing results in the literature.

How to cite

top

Chen, Peng, and Tang, Xianhua. "Existence of solutions for a class of second-order $p$-Laplacian systems with impulsive effects." Applications of Mathematics 59.5 (2014): 543-570. <http://eudml.org/doc/262041>.

@article{Chen2014,
abstract = {The purpose of this paper is to study the existence and multiplicity of a periodic solution for the non-autonomous second-order system \begin\{gather\} \frac\{\{\rm d\}\}\{\{\rm d\}t\}(|\dot\{u\}(t)|^\{p-2\}\dot\{u\}(t)) =\nabla F(t, u(t)),\quad \text\{\rm a.e.\}\ t\in [0,T],\nonumber \\ u(0)-u(T)=\dot\{u\}(0)-\dot\{u\}(T)=0,\nonumber \\ \Delta \dot\{u\}^i(t\_\{j\})=\dot\{u\}^i(t\_j^+)-\dot\{u\}^i(t\_j^-)=I\_\{ij\}(u^i(t\_j)),\ i = 1, 2,\dots , N;\ j = 1, 2,\dots ,m.\nonumber \end\{gather\} By using the least action principle and the saddle point theorem, some new existence theorems are obtained for second-order $p$-Laplacian systems with or without impulse under weak sublinear growth conditions, improving some existing results in the literature.},
author = {Chen, Peng, Tang, Xianhua},
journal = {Applications of Mathematics},
keywords = {second-order $p$-Laplacian Hamiltonian systems; impulsive effect; critical point theory; second-order $p$-Laplacian Hamiltonian systems; impulsive effect; critical point theory},
language = {eng},
number = {5},
pages = {543-570},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of solutions for a class of second-order $p$-Laplacian systems with impulsive effects},
url = {http://eudml.org/doc/262041},
volume = {59},
year = {2014},
}

TY - JOUR
AU - Chen, Peng
AU - Tang, Xianhua
TI - Existence of solutions for a class of second-order $p$-Laplacian systems with impulsive effects
JO - Applications of Mathematics
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 5
SP - 543
EP - 570
AB - The purpose of this paper is to study the existence and multiplicity of a periodic solution for the non-autonomous second-order system \begin{gather} \frac{{\rm d}}{{\rm d}t}(|\dot{u}(t)|^{p-2}\dot{u}(t)) =\nabla F(t, u(t)),\quad \text{\rm a.e.}\ t\in [0,T],\nonumber \\ u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0,\nonumber \\ \Delta \dot{u}^i(t_{j})=\dot{u}^i(t_j^+)-\dot{u}^i(t_j^-)=I_{ij}(u^i(t_j)),\ i = 1, 2,\dots , N;\ j = 1, 2,\dots ,m.\nonumber \end{gather} By using the least action principle and the saddle point theorem, some new existence theorems are obtained for second-order $p$-Laplacian systems with or without impulse under weak sublinear growth conditions, improving some existing results in the literature.
LA - eng
KW - second-order $p$-Laplacian Hamiltonian systems; impulsive effect; critical point theory; second-order $p$-Laplacian Hamiltonian systems; impulsive effect; critical point theory
UR - http://eudml.org/doc/262041
ER -

References

top
  1. Agarwal, R. P., O'Regan, D., 10.1016/S0096-3003(99)00074-0, Appl. Math. Comput. 114 (2000), 51-59. (2000) Zbl1047.34008MR1775121DOI10.1016/S0096-3003(99)00074-0
  2. Berger, M. S., Schechter, M., 10.1016/0001-8708(77)90001-9, Adv. Math. 25 (1977), 97-132. (1977) Zbl0354.47025MR0500336DOI10.1016/0001-8708(77)90001-9
  3. Chen, P., Tang, X. H., 10.11650/twjm/1500406658, Taiwanese J. Math. 16 (2012), 803-828. (2012) Zbl1251.34044MR2917240DOI10.11650/twjm/1500406658
  4. Lakshmikantham, V., Baĭnov, D. D., Simeonov, P. S., Theory of Impulsive Differential Equations, Series in Modern Applied Mathematics 6 World Scientific, Singapore (1989). (1989) MR1082551
  5. Lee, E. K., Lee, Y. H., 10.1016/j.amc.2003.10.013, Appl. Math. Comput. 158 (2004), 745-759. (2004) Zbl1069.34035MR2095700DOI10.1016/j.amc.2003.10.013
  6. Lin, X. N., Jiang, D. Q., 10.1016/j.jmaa.2005.07.076, J. Math. Anal. Appl. 321 (2006), 501-514. (2006) Zbl1103.34015MR2241134DOI10.1016/j.jmaa.2005.07.076
  7. Mawhin, J., Semi-coercive monotone variational problems, Bull. Cl. Sci., V. Sér., Acad. R. Belg. 73 (1987), 118-130. (1987) Zbl0647.49007MR0938142
  8. Mawhin, J., Willem, M., 10.1007/978-1-4757-2061-7, Applied Mathematical Sciences 74 Springer, New York (1989). (1989) Zbl0676.58017MR0982267DOI10.1007/978-1-4757-2061-7
  9. Mawhin, J., Willem, M., 10.1016/S0294-1449(16)30376-6, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 3 (1986), 431-453. (1986) Zbl0678.35091MR0870864DOI10.1016/S0294-1449(16)30376-6
  10. Nieto, J. J., O'Regan, D., Variational approach to impulsive differential equations, Nonlinear Anal., Real World Appl. 10 (2009), 680-690. (2009) Zbl1167.34318MR2474254
  11. Rabinowitz, P. H., 10.1002/cpa.3160330504, Commun. Pure Appl. Math. 33 (1980), 609-633. (1980) Zbl0425.34024MR0586414DOI10.1002/cpa.3160330504
  12. Rabinowitz, P. H., Minimax methods in critical point theory with applications to differential equations, Reg. Conf. Ser. Math. 65 American Mathematical Society, Providence (1986). (1986) Zbl0609.58002MR0845785
  13. Samoilenko, A. M., Perestyuk, N. A., Impulsive Differential Equations, Transl. from the Russian. World Scientific Series on Nonlinear Science, Series A. 14. Singapore (1995). (1995) Zbl0837.34003MR1355787
  14. Sun, J. T., Chen, H. B., Yang, L., 10.1016/j.na.2010.03.035, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73 (2010), 440-449. (2010) Zbl1198.34037MR2650827DOI10.1016/j.na.2010.03.035
  15. Tang, C. L., 10.1006/jmaa.1995.1044, J. Math. Anal. Appl. 189 (1995), 671-675. (1995) Zbl0824.34043MR1312546DOI10.1006/jmaa.1995.1044
  16. Tang, C. L., 10.1006/jmaa.1996.0327, J. Math. Anal. Appl. 202 (1996), 465-469. (1996) Zbl0857.34044MR1406241DOI10.1006/jmaa.1996.0327
  17. Tang, C. L., 10.1090/S0002-9939-98-04706-6, Proc. Am. Math. Soc. 126 (1998), 3263-3270. (1998) MR1476396DOI10.1090/S0002-9939-98-04706-6
  18. Tang, C. L., Wu, X. P., 10.1006/jmaa.2000.7401, J. Math. Anal. Appl. 259 (2001), 386-397. (2001) Zbl0999.34039MR1842066DOI10.1006/jmaa.2000.7401
  19. Tang, X. H., Meng, Q., Solutions of a second-order Hamiltonian system with periodic boundary conditions, Nonlinear Anal., Real World Appl. 11 (2010), 3722-3733. (2010) Zbl1223.34024MR2683825
  20. Willem, M., Forced oscillations of Hamiltonian systems, Publ. Math. Fac. Sci. Besançon, Anal. Non Lineaire Annee 1980-1981, Expose No. 4 French (1981). (1981) 
  21. Wu, X., 10.1016/j.na.2004.05.020, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 58 (2004), 899-907. (2004) Zbl1058.34053MR2086063DOI10.1016/j.na.2004.05.020
  22. Wu, X. P., Tang, C. L., 10.1006/jmaa.1999.6408, J. Math. Anal. Appl. 236 (1999), 227-235. (1999) Zbl0971.34027MR1704579DOI10.1006/jmaa.1999.6408
  23. Yang, X. X., Shen, J. H., 10.1016/j.amc.2006.12.085, Appl. Math. Comput. 189 (2007), 1943-1952. (2007) Zbl1125.65074MR2332147DOI10.1016/j.amc.2006.12.085
  24. Zavalishchin, S. T., Sesekin, A. N., Dynamics Impulse System: Theory and Applications, Mathematics and its Applications 394 Kluwer, Dordrecht (1997). (1997) MR1441079
  25. Zhao, F., Wu, X., 10.1016/j.jmaa.2004.01.041, J. Math. Anal. Appl. 296 (2004), 422-434. (2004) MR2075174DOI10.1016/j.jmaa.2004.01.041
  26. Zhao, F., Wu, X., Existence and multiplicity of periodic solution for non-autonomous second-order systems with linear nonlinearity, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 60 (2005), 325-335. (2005) Zbl1087.34022MR2101882
  27. Zhou, J. W., Li, Y. K., 10.1016/j.na.2009.01.140, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 2856-2865. (2009) Zbl1175.34035MR2532812DOI10.1016/j.na.2009.01.140
  28. Zhou, J. W., Li, Y. K., 10.1016/j.na.2009.08.041, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 1594-1603. (2010) Zbl1193.34057MR2577560DOI10.1016/j.na.2009.08.041

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.