Real hypersurfaces in complex two-plane Grassmannians with certain commuting condition II
Hyunjin Lee; Seonhui Kim; Young Jin Suh
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 1, page 133-148
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLee, Hyunjin, Kim, Seonhui, and Suh, Young Jin. "Real hypersurfaces in complex two-plane Grassmannians with certain commuting condition II." Czechoslovak Mathematical Journal 64.1 (2014): 133-148. <http://eudml.org/doc/262050>.
@article{Lee2014,
abstract = {Lee, Kim and Suh (2012) gave a characterization for real hypersurfaces $M$ of Type $\{\rm (A)\}$ in complex two plane Grassmannians $G_2(\{\mathbb \{C\}\}^\{m+2\})$ with a commuting condition between the shape operator $A$ and the structure tensors $\phi $ and $\phi _\{1\}$ for $M$ in $G_2(\{\mathbb \{C\}\}^\{m+2\})$. Motivated by this geometrical notion, in this paper we consider a new commuting condition in relation to the shape operator $A$ and a new operator $\phi \phi _\{1\}$ induced by two structure tensors $\phi $ and $\phi _\{1\}$. That is, this commuting shape operator is given by $\phi \phi _\{1\} A = A \phi \phi _\{1\}$. Using this condition, we prove that $M$ is locally congruent to a tube of radius $r$ over a totally geodesic $G_2(\{\mathbb \{C\}\}^\{m+1\})$ in $G_2(\{\mathbb \{C\}\}^\{m+2\})$.},
author = {Lee, Hyunjin, Kim, Seonhui, Suh, Young Jin},
journal = {Czechoslovak Mathematical Journal},
keywords = {complex two-plane Grassmannians; Hopf hypersurface; $\mathfrak \{D\}^\{\bot \}$-invariant hypersurface; commuting shape operator; Reeb vector field; complex two-plane Grassmannian; Hopf hypersurface; Reeb vector field; shape operator; $\mathfrak \{D\}^\{\bot \}$-invariant hypersurface},
language = {eng},
number = {1},
pages = {133-148},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Real hypersurfaces in complex two-plane Grassmannians with certain commuting condition II},
url = {http://eudml.org/doc/262050},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Lee, Hyunjin
AU - Kim, Seonhui
AU - Suh, Young Jin
TI - Real hypersurfaces in complex two-plane Grassmannians with certain commuting condition II
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 1
SP - 133
EP - 148
AB - Lee, Kim and Suh (2012) gave a characterization for real hypersurfaces $M$ of Type ${\rm (A)}$ in complex two plane Grassmannians $G_2({\mathbb {C}}^{m+2})$ with a commuting condition between the shape operator $A$ and the structure tensors $\phi $ and $\phi _{1}$ for $M$ in $G_2({\mathbb {C}}^{m+2})$. Motivated by this geometrical notion, in this paper we consider a new commuting condition in relation to the shape operator $A$ and a new operator $\phi \phi _{1}$ induced by two structure tensors $\phi $ and $\phi _{1}$. That is, this commuting shape operator is given by $\phi \phi _{1} A = A \phi \phi _{1}$. Using this condition, we prove that $M$ is locally congruent to a tube of radius $r$ over a totally geodesic $G_2({\mathbb {C}}^{m+1})$ in $G_2({\mathbb {C}}^{m+2})$.
LA - eng
KW - complex two-plane Grassmannians; Hopf hypersurface; $\mathfrak {D}^{\bot }$-invariant hypersurface; commuting shape operator; Reeb vector field; complex two-plane Grassmannian; Hopf hypersurface; Reeb vector field; shape operator; $\mathfrak {D}^{\bot }$-invariant hypersurface
UR - http://eudml.org/doc/262050
ER -
References
top- Alekseevskij, D. V., Compact quaternion spaces, Funkts. Anal. Prilozh. 2 (1968), 11-20 Russian. (1968) Zbl0175.19001MR0231314
- Berndt, J., Riemannian geometry of complex two-plane Grassmannians, Rend. Semin. Mat., Torino 55 (1997), 19-83. (1997) Zbl0909.53038MR1626089
- Berndt, J., Suh, Y. J., 10.1007/s006050050018, Monatsh. Math. 127 (1999), 1-14. (1999) Zbl0920.53016MR1666307DOI10.1007/s006050050018
- Berndt, J., Suh, Y. J., 10.1007/s00605-001-0494-4, Monatsh. Math. 137 (2002), 87-98. (2002) Zbl1015.53034MR1937621DOI10.1007/s00605-001-0494-4
- Jeong, I., Lee, H. J., Suh, Y. J., 10.1017/S0004972708000609, Bull. Aust. Math. Soc. 78 (2008), 199-210. (2008) Zbl1154.53031MR2466859DOI10.1017/S0004972708000609
- Kobayashi, S., Nomizu, K., Foundations of Differential Geometry I, Interscience Publishers, a division of John Wiley and Sons New York (1963). (1963) Zbl0119.37502MR0152974
- Kobayashi, S., Nomizu, K., Foundations of Differential Geometry Vol. II, Interscience Tracts in Pure and Applied Mathematics No. 15, Vol. II Interscience Publishers, a division of John Wiley and Sons, New York (1969). (1969) Zbl0175.48504MR0238225
- Lee, H., Kim, S., Suh, Y. J., 10.1007/s10587-012-0049-y, Czech. Math. J. 62 (2012), 849-861. (2012) Zbl1260.53097MR2984638DOI10.1007/s10587-012-0049-y
- Lee, H., Suh, Y. J., 10.4134/BKMS.2010.47.3.551, Bull. Korean Math. Soc. 47 (2010), 551-561. (2010) Zbl1206.53064MR2666376DOI10.4134/BKMS.2010.47.3.551
- Pérez, J. D., Jeong, I., Suh, Y. J., 10.1007/s10474-007-6091-9, Acta Math. Hung. 117 (2007), 201-217. (2007) Zbl1220.53070MR2361601DOI10.1007/s10474-007-6091-9
- Pérez, J. D., Suh, Y. J., 10.4134/JKMS.2007.44.1.211, J. Korean Math. Soc. 44 (2007), 211-235. (2007) Zbl1156.53034MR2283469DOI10.4134/JKMS.2007.44.1.211
- Pérez, J. D., Suh, Y. J., Watanabe, Y., 10.1016/j.geomphys.2010.06.017, J. Geom. Phys. 60 (2010), 1806-1818. (2010) Zbl1197.53071MR2679423DOI10.1016/j.geomphys.2010.06.017
- Suh, Y. J., 10.1017/S0004972700037795, Bull. Aust. Math. Soc. 68 (2003), 379-393. (2003) Zbl1058.53046MR2027682DOI10.1017/S0004972700037795
- Suh, Y. J., 10.1016/j.matpur.2012.10.010, J. Math. Pures Appl. 100 (2013), 16-33. (2013) Zbl1279.53052MR3057300DOI10.1016/j.matpur.2012.10.010
- Suh, Y. J., Real hypersurfaces in complex two-plane Grassmannians with parallel Ricci tensor, Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), 1309-1324. (2012) Zbl1293.53071MR3002598
- Suh, Y. J., 10.1016/j.geomphys.2010.12.010, J. Geom. Phys. 61 (2011), 808-814. (2011) Zbl1209.53046MR2765405DOI10.1016/j.geomphys.2010.12.010
- Suh, Y. J., 10.1016/j.geomphys.2012.10.005, J. Geom. Phys. 64 (2013), 1-11. (2013) Zbl1259.53052MR3004010DOI10.1016/j.geomphys.2012.10.005
- Suh, Y. J., 10.1007/s00605-005-0329-9, Monatsh. Math. 147 (2006), 337-355. (2006) Zbl1094.53050MR2215841DOI10.1007/s00605-005-0329-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.