On the a b c -problem in Weyl-Heisenberg frames

Xinggang He; Haixiong Li

Czechoslovak Mathematical Journal (2014)

  • Volume: 64, Issue: 2, page 447-458
  • ISSN: 0011-4642

Abstract

top
Let a , b , c > 0 . We investigate the characterization problem which asks for a classification of all the triples ( a , b , c ) such that the Weyl-Heisenberg system { e 2 π i m b x χ [ n a , n a + c ) : m , n } is a frame for L 2 ( ) . It turns out that the answer to the problem is quite complicated, see Gu and Han (2008) and Janssen (2003). Using a dilation technique, one can reduce the problem to the case where b = 1 and only let a and c vary. In this paper, we extend the Zak transform technique and use the Fourier analysis technique to study the problem for the case of a being a rational number. We prove some special cases of values for c and a that do not produce a frame, which expands earlier works.

How to cite

top

He, Xinggang, and Li, Haixiong. "On the $abc$-problem in Weyl-Heisenberg frames." Czechoslovak Mathematical Journal 64.2 (2014): 447-458. <http://eudml.org/doc/262053>.

@article{He2014,
abstract = {Let $a,b,c>0$. We investigate the characterization problem which asks for a classification of all the triples $(a,b,c)$ such that the Weyl-Heisenberg system $\lbrace \{\rm e\}^\{2\pi \{\rm i\}mbx\} \* \chi _\{[na,na+c)\}\colon m,n\in \{\mathbb \{Z\}\}\rbrace $ is a frame for $L^2(\{\mathbb \{R\}\})$. It turns out that the answer to the problem is quite complicated, see Gu and Han (2008) and Janssen (2003). Using a dilation technique, one can reduce the problem to the case where $b=1$ and only let $a$ and $c$ vary. In this paper, we extend the Zak transform technique and use the Fourier analysis technique to study the problem for the case of $a$ being a rational number. We prove some special cases of values for $c$ and $a$ that do not produce a frame, which expands earlier works.},
author = {He, Xinggang, Li, Haixiong},
journal = {Czechoslovak Mathematical Journal},
keywords = {$abc$-problem; Weyl-Heisenberg frame; Zak transform; $abc$-problem; Weyl-Heisenberg frame; Zak transform},
language = {eng},
number = {2},
pages = {447-458},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the $abc$-problem in Weyl-Heisenberg frames},
url = {http://eudml.org/doc/262053},
volume = {64},
year = {2014},
}

TY - JOUR
AU - He, Xinggang
AU - Li, Haixiong
TI - On the $abc$-problem in Weyl-Heisenberg frames
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 2
SP - 447
EP - 458
AB - Let $a,b,c>0$. We investigate the characterization problem which asks for a classification of all the triples $(a,b,c)$ such that the Weyl-Heisenberg system $\lbrace {\rm e}^{2\pi {\rm i}mbx} \* \chi _{[na,na+c)}\colon m,n\in {\mathbb {Z}}\rbrace $ is a frame for $L^2({\mathbb {R}})$. It turns out that the answer to the problem is quite complicated, see Gu and Han (2008) and Janssen (2003). Using a dilation technique, one can reduce the problem to the case where $b=1$ and only let $a$ and $c$ vary. In this paper, we extend the Zak transform technique and use the Fourier analysis technique to study the problem for the case of $a$ being a rational number. We prove some special cases of values for $c$ and $a$ that do not produce a frame, which expands earlier works.
LA - eng
KW - $abc$-problem; Weyl-Heisenberg frame; Zak transform; $abc$-problem; Weyl-Heisenberg frame; Zak transform
UR - http://eudml.org/doc/262053
ER -

References

top
  1. Casazza, P. G., Modern tools for Weyl-Heisenberg (Gabor) frame theory, Adv. Imag. Elec. Phys. 115 (2000), 1-127. (2000) 
  2. Casazza, P. G., Kalton, N. J., 10.1090/S0002-9939-02-06352-9, Proc. Am. Math. Soc. 130 (2002), 2313-2318. (2002) Zbl0991.42023MR1896414DOI10.1090/S0002-9939-02-06352-9
  3. Gröchenig, K., Stöckler, J., 10.1215/00127094-2141944, Duke Math. J. 162 (2013), 1003-1031. (2013) Zbl1277.42037MR3053565DOI10.1215/00127094-2141944
  4. Gu, Q., Han, D., 10.1016/j.acha.2007.06.005, Appl. Comput. Harmon. Anal. 24 (2008), 290-309. (2008) Zbl1242.42023MR2407006DOI10.1016/j.acha.2007.06.005
  5. Heil, C., 10.1007/s00041-006-6073-2, J. Fourier Anal. Appl. 13 (2007), 113-166. (2007) Zbl1133.42043MR2313431DOI10.1007/s00041-006-6073-2
  6. Janssen, A. J. E. M., 10.1016/0019-3577(96)85088-9, Indag. Math., New Ser. 7 (1996), 165-183. (1996) Zbl1056.42512MR1621312DOI10.1016/0019-3577(96)85088-9
  7. Janssen, A. J. E. M., Zak transforms with few zeros and the tie, Advances in Gabor Analysis H. G. Feichtinger et al. Applied and Numerical Harmonic Analysis Birkhäuser, Basel 31-70 (2003). (2003) Zbl1027.42025MR1955931
  8. Janssen, A. J. E. M., Strohmer, T., 10.1006/acha.2001.0376, Appl. Comput. Harmon. Anal. 12 (2002), 259-267. (2002) Zbl1005.42021MR1884237DOI10.1006/acha.2001.0376
  9. Lyubarskij, Y. I., Frames in the Bargmann space of entire functions, Entire and Subharmonic Functions Advances in Soviet Mathematics 11 American Mathematical Society, Providence (1992), 167-180. (1992) Zbl0770.30025MR1188007
  10. Seip, K., Density theorems for sampling and interpolation in the Bargmann-Fock space I, J. Reine Angew. Math. 429 (1992), 91-106. (1992) Zbl0745.46034MR1173117
  11. Seip, K., Wallstén, R., Density theorems for sampling and interpolation in the Bargmann-Fock space II, J. Reine Angew. Math. 429 (1992), 107-113. (1992) Zbl0745.46033MR1173118

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.