On conformal powers of the Dirac operator on spin manifolds
Archivum Mathematicum (2014)
- Volume: 050, Issue: 4, page 237-253
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topFischmann, Matthias. "On conformal powers of the Dirac operator on spin manifolds." Archivum Mathematicum 050.4 (2014): 237-253. <http://eudml.org/doc/262122>.
@article{Fischmann2014,
abstract = {The well known conformal covariance of the Dirac operator acting on spinor fields does not extend to its powers in general. For odd powers of the Dirac operator we derive an algorithmic construction in terms of associated tractor bundles computing correction terms in order to achieve conformal covariance. These operators turn out to be formally (anti-) self-adjoint. Working out this algorithm we recover explicit formula for the conformal third and present a conformal fifth power of the Dirac operator. Finally, we will present polynomial structures for the first examples of conformal powers in terms of first order differential operators acting on the spinor bundle.},
author = {Fischmann, Matthias},
journal = {Archivum Mathematicum},
keywords = {conformal and spin geometry; conformal powers of the Dirac operator; conformal covariance; tractor bundle; tractor D-operator; conformal and spin geometry; conformal powers of the Dirac operator; conformal covariance; tractor bundle; tractor D-operator},
language = {eng},
number = {4},
pages = {237-253},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On conformal powers of the Dirac operator on spin manifolds},
url = {http://eudml.org/doc/262122},
volume = {050},
year = {2014},
}
TY - JOUR
AU - Fischmann, Matthias
TI - On conformal powers of the Dirac operator on spin manifolds
JO - Archivum Mathematicum
PY - 2014
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 050
IS - 4
SP - 237
EP - 253
AB - The well known conformal covariance of the Dirac operator acting on spinor fields does not extend to its powers in general. For odd powers of the Dirac operator we derive an algorithmic construction in terms of associated tractor bundles computing correction terms in order to achieve conformal covariance. These operators turn out to be formally (anti-) self-adjoint. Working out this algorithm we recover explicit formula for the conformal third and present a conformal fifth power of the Dirac operator. Finally, we will present polynomial structures for the first examples of conformal powers in terms of first order differential operators acting on the spinor bundle.
LA - eng
KW - conformal and spin geometry; conformal powers of the Dirac operator; conformal covariance; tractor bundle; tractor D-operator; conformal and spin geometry; conformal powers of the Dirac operator; conformal covariance; tractor bundle; tractor D-operator
UR - http://eudml.org/doc/262122
ER -
References
top- Bailey, T.N., Eastwood, M.G., Gover, A.R., 10.1216/rmjm/1181072333, Rocky Mountain J. Math. 24 (4) (1994), 1191–1217. (1994) Zbl0828.53012MR1322223DOI10.1216/rmjm/1181072333
- Branson, T., 10.1080/03605308208820228, Comm. Partial Differential Equation 7 (4) (1982), 393–431. (1982) Zbl0532.53021MR0652815DOI10.1080/03605308208820228
- Branson, T., Conformal structure and spin geometry, Dirac Operators: Yesterday and Today, International Press, 2005. (2005) Zbl1109.53051MR2205362
- Čap, A., Slovák, J., Parabolic Geometries: Background and General Theory, vol. 1, American Mathematical Society, 2009. (2009) MR2532439
- Eastwood, M.G., Rice, J.W., Conformally invariant differential operators on Minkowski space and their curved analogues, Comm. Math. Phys. 109 (2) (1987), 207–228. (1987) Zbl0659.53047MR0880414
- Eelbode, D., Souček, V., Conformally invariant powers of the Dirac operator in Clifford analysis, Math. Methods Appl. Sci. 33 (13) (2010), 1558–1570. (2010) Zbl1201.30065MR2680665
- Fefferman, C., Graham, C.R., Conformal invariants. The mathematical heritage of Élie Cartan (Lyon, 1984), yon, 1984), Astérisque, Numéro Hors Série (1985), 95–116. (1985) MR0837196
- Fefferman, C., Graham, C.R., The ambient metric, Annals of Mathematics Studies, vol. 178, Princeton University Press, Princeton, NJ, 2012. (2012) Zbl1243.53004MR2858236
- Fegan, H.D., 10.1093/qmath/27.3.371, Quart. J. Math. Oxford (2) 27 (107) (1976), 371–378. (1976) Zbl0334.58016MR0482879DOI10.1093/qmath/27.3.371
- Fischmann, M., Conformally covariant differential operators acting on spinor bundles and related conformal covariants, Ph.D. thesis, Humboldt Universität zu Berlin, 2013, http://edoc.hu-berlin.de/dissertationen/fischmann-matthias-2013-03-04/PDF/fischmann.pdf. (2013)
- Fischmann, M., Krattenthaler, C., Somberg, P., On conformal powers of the Dirac operator on Einstein manifolds, ArXiv e-prints (2014), http://arxiv.org/abs/1405.7304. (2014) MR3369353
- Gover, A.R., 10.1007/s00208-006-0004-z, Math. Anal. 336 (2) (2006), 311–334. (2006) Zbl1125.53032MR2244375DOI10.1007/s00208-006-0004-z
- Gover, A.R., Hirachi, K., 10.1090/S0894-0347-04-00450-3, J. Amer. Math. Soc. 14 (2) (2004), 389–405. (2004) MR2051616DOI10.1090/S0894-0347-04-00450-3
- Gover, A.R., Peterson, L.J., 10.1007/s00220-002-0790-4, Comm. Math. Phys. 235 (2) (2003), 339–378. (2003) Zbl1022.58014MR1969732DOI10.1007/s00220-002-0790-4
- Graham, C.R., Jenne, R.W., Mason, L., Sparling, G., Conformally invariant powers of the Laplacian, I: Existence, J. London Math. Soc. (2) 2 (3) (1992), 557–565. (1992) Zbl0726.53010MR1190438
- Graham, C.R., Zworski, M., 10.1007/s00222-002-0268-1, Invent. Math. 152 (2003), 89–118. (2003) Zbl1030.58022MR1965361DOI10.1007/s00222-002-0268-1
- Guillarmou, C., Moroianu, S., Park, J., 10.1007/s12220-012-9338-9, J. Geom. Anal. (2012), 1–39, http://dx.doi.org/10.1007/s12220-012-9338-9. (2012) DOI10.1007/s12220-012-9338-9
- Hitchin, N.J., 10.1016/0001-8708(74)90021-8, Adv. Math. 14 (1) (1974), 1–55. (1974) Zbl0284.58016MR0358873DOI10.1016/0001-8708(74)90021-8
- Holland, J., Sparling, G., Conformally invariant powers of the ambient Dirac operator, ArXiv e-prints (2001), http://arxiv.org/abs/math/0112033. (2001)
- Juhl, A., On conformally covariant powers of the Laplacian, ArXiv e-prints (2010), http://arxiv.org/abs/0905.3992. (2010)
- Juhl, A., 10.1007/s00039-013-0232-9, Geom. Funct. Anal. 23 (2013), 1278–1370, http://arxiv.org/abs/1108.0273. (2013) Zbl1293.53049MR3077914DOI10.1007/s00039-013-0232-9
- Kosmann, Y., Propriétés des dérivations de l’algèbre des tenseurs-spineurs, C. R. Acad. Sci. Paris Sér. A 264 (1967), 355–358. (1967) MR0212712
- Ørsted, B., 10.1007/BF00417601, Lett. Math. Phys. 1 (3) (1976), 183–186. (1976) Zbl0338.53046MR0433524DOI10.1007/BF00417601
- Šilhan, J., Invariant differential operators in conformal geometry, Ph.D. thesis, University of Auckland, 2006. (2006)
- Slovák, J., Natural operators on conformal manifolds, Ph.D. thesis, Masaryk University Brno, 1993. (1993) Zbl0805.53011MR1255551
- Thomas, T.Y., 10.1073/pnas.12.5.352, Proc. Nat. Acad. Sci. U.S.A. 12 (5) (1926), 352–359. (1926) DOI10.1073/pnas.12.5.352
- Yamabe, H., On a deformation of Riemannian structures on compact manifolds, Osaka J. Math. 12 (1) (1960), 21–37. (1960) Zbl0096.37201MR0125546
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.