On conformal powers of the Dirac operator on spin manifolds

Matthias Fischmann

Archivum Mathematicum (2014)

  • Volume: 050, Issue: 4, page 237-253
  • ISSN: 0044-8753

Abstract

top
The well known conformal covariance of the Dirac operator acting on spinor fields does not extend to its powers in general. For odd powers of the Dirac operator we derive an algorithmic construction in terms of associated tractor bundles computing correction terms in order to achieve conformal covariance. These operators turn out to be formally (anti-) self-adjoint. Working out this algorithm we recover explicit formula for the conformal third and present a conformal fifth power of the Dirac operator. Finally, we will present polynomial structures for the first examples of conformal powers in terms of first order differential operators acting on the spinor bundle.

How to cite

top

Fischmann, Matthias. "On conformal powers of the Dirac operator on spin manifolds." Archivum Mathematicum 050.4 (2014): 237-253. <http://eudml.org/doc/262122>.

@article{Fischmann2014,
abstract = {The well known conformal covariance of the Dirac operator acting on spinor fields does not extend to its powers in general. For odd powers of the Dirac operator we derive an algorithmic construction in terms of associated tractor bundles computing correction terms in order to achieve conformal covariance. These operators turn out to be formally (anti-) self-adjoint. Working out this algorithm we recover explicit formula for the conformal third and present a conformal fifth power of the Dirac operator. Finally, we will present polynomial structures for the first examples of conformal powers in terms of first order differential operators acting on the spinor bundle.},
author = {Fischmann, Matthias},
journal = {Archivum Mathematicum},
keywords = {conformal and spin geometry; conformal powers of the Dirac operator; conformal covariance; tractor bundle; tractor D-operator; conformal and spin geometry; conformal powers of the Dirac operator; conformal covariance; tractor bundle; tractor D-operator},
language = {eng},
number = {4},
pages = {237-253},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On conformal powers of the Dirac operator on spin manifolds},
url = {http://eudml.org/doc/262122},
volume = {050},
year = {2014},
}

TY - JOUR
AU - Fischmann, Matthias
TI - On conformal powers of the Dirac operator on spin manifolds
JO - Archivum Mathematicum
PY - 2014
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 050
IS - 4
SP - 237
EP - 253
AB - The well known conformal covariance of the Dirac operator acting on spinor fields does not extend to its powers in general. For odd powers of the Dirac operator we derive an algorithmic construction in terms of associated tractor bundles computing correction terms in order to achieve conformal covariance. These operators turn out to be formally (anti-) self-adjoint. Working out this algorithm we recover explicit formula for the conformal third and present a conformal fifth power of the Dirac operator. Finally, we will present polynomial structures for the first examples of conformal powers in terms of first order differential operators acting on the spinor bundle.
LA - eng
KW - conformal and spin geometry; conformal powers of the Dirac operator; conformal covariance; tractor bundle; tractor D-operator; conformal and spin geometry; conformal powers of the Dirac operator; conformal covariance; tractor bundle; tractor D-operator
UR - http://eudml.org/doc/262122
ER -

References

top
  1. Bailey, T.N., Eastwood, M.G., Gover, A.R., 10.1216/rmjm/1181072333, Rocky Mountain J. Math. 24 (4) (1994), 1191–1217. (1994) Zbl0828.53012MR1322223DOI10.1216/rmjm/1181072333
  2. Branson, T., 10.1080/03605308208820228, Comm. Partial Differential Equation 7 (4) (1982), 393–431. (1982) Zbl0532.53021MR0652815DOI10.1080/03605308208820228
  3. Branson, T., Conformal structure and spin geometry, Dirac Operators: Yesterday and Today, International Press, 2005. (2005) Zbl1109.53051MR2205362
  4. Čap, A., Slovák, J., Parabolic Geometries: Background and General Theory, vol. 1, American Mathematical Society, 2009. (2009) MR2532439
  5. Eastwood, M.G., Rice, J.W., Conformally invariant differential operators on Minkowski space and their curved analogues, Comm. Math. Phys. 109 (2) (1987), 207–228. (1987) Zbl0659.53047MR0880414
  6. Eelbode, D., Souček, V., Conformally invariant powers of the Dirac operator in Clifford analysis, Math. Methods Appl. Sci. 33 (13) (2010), 1558–1570. (2010) Zbl1201.30065MR2680665
  7. Fefferman, C., Graham, C.R., Conformal invariants. The mathematical heritage of Élie Cartan (Lyon, 1984), yon, 1984), Astérisque, Numéro Hors Série (1985), 95–116. (1985) MR0837196
  8. Fefferman, C., Graham, C.R., The ambient metric, Annals of Mathematics Studies, vol. 178, Princeton University Press, Princeton, NJ, 2012. (2012) Zbl1243.53004MR2858236
  9. Fegan, H.D., 10.1093/qmath/27.3.371, Quart. J. Math. Oxford (2) 27 (107) (1976), 371–378. (1976) Zbl0334.58016MR0482879DOI10.1093/qmath/27.3.371
  10. Fischmann, M., Conformally covariant differential operators acting on spinor bundles and related conformal covariants, Ph.D. thesis, Humboldt Universität zu Berlin, 2013, http://edoc.hu-berlin.de/dissertationen/fischmann-matthias-2013-03-04/PDF/fischmann.pdf. (2013) 
  11. Fischmann, M., Krattenthaler, C., Somberg, P., On conformal powers of the Dirac operator on Einstein manifolds, ArXiv e-prints (2014), http://arxiv.org/abs/1405.7304. (2014) MR3369353
  12. Gover, A.R., 10.1007/s00208-006-0004-z, Math. Anal. 336 (2) (2006), 311–334. (2006) Zbl1125.53032MR2244375DOI10.1007/s00208-006-0004-z
  13. Gover, A.R., Hirachi, K., 10.1090/S0894-0347-04-00450-3, J. Amer. Math. Soc. 14 (2) (2004), 389–405. (2004) MR2051616DOI10.1090/S0894-0347-04-00450-3
  14. Gover, A.R., Peterson, L.J., 10.1007/s00220-002-0790-4, Comm. Math. Phys. 235 (2) (2003), 339–378. (2003) Zbl1022.58014MR1969732DOI10.1007/s00220-002-0790-4
  15. Graham, C.R., Jenne, R.W., Mason, L., Sparling, G., Conformally invariant powers of the Laplacian, I: Existence, J. London Math. Soc. (2) 2 (3) (1992), 557–565. (1992) Zbl0726.53010MR1190438
  16. Graham, C.R., Zworski, M., 10.1007/s00222-002-0268-1, Invent. Math. 152 (2003), 89–118. (2003) Zbl1030.58022MR1965361DOI10.1007/s00222-002-0268-1
  17. Guillarmou, C., Moroianu, S., Park, J., 10.1007/s12220-012-9338-9, J. Geom. Anal. (2012), 1–39, http://dx.doi.org/10.1007/s12220-012-9338-9. (2012) DOI10.1007/s12220-012-9338-9
  18. Hitchin, N.J., 10.1016/0001-8708(74)90021-8, Adv. Math. 14 (1) (1974), 1–55. (1974) Zbl0284.58016MR0358873DOI10.1016/0001-8708(74)90021-8
  19. Holland, J., Sparling, G., Conformally invariant powers of the ambient Dirac operator, ArXiv e-prints (2001), http://arxiv.org/abs/math/0112033. (2001) 
  20. Juhl, A., On conformally covariant powers of the Laplacian, ArXiv e-prints (2010), http://arxiv.org/abs/0905.3992. (2010) 
  21. Juhl, A., 10.1007/s00039-013-0232-9, Geom. Funct. Anal. 23 (2013), 1278–1370, http://arxiv.org/abs/1108.0273. (2013) Zbl1293.53049MR3077914DOI10.1007/s00039-013-0232-9
  22. Kosmann, Y., Propriétés des dérivations de l’algèbre des tenseurs-spineurs, C. R. Acad. Sci. Paris Sér. A 264 (1967), 355–358. (1967) MR0212712
  23. Ørsted, B., 10.1007/BF00417601, Lett. Math. Phys. 1 (3) (1976), 183–186. (1976) Zbl0338.53046MR0433524DOI10.1007/BF00417601
  24. Šilhan, J., Invariant differential operators in conformal geometry, Ph.D. thesis, University of Auckland, 2006. (2006) 
  25. Slovák, J., Natural operators on conformal manifolds, Ph.D. thesis, Masaryk University Brno, 1993. (1993) Zbl0805.53011MR1255551
  26. Thomas, T.Y., 10.1073/pnas.12.5.352, Proc. Nat. Acad. Sci. U.S.A. 12 (5) (1926), 352–359. (1926) DOI10.1073/pnas.12.5.352
  27. Yamabe, H., On a deformation of Riemannian structures on compact manifolds, Osaka J. Math. 12 (1) (1960), 21–37. (1960) Zbl0096.37201MR0125546

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.