A Maschke type theorem for relative Hom-Hopf modules

Shuangjian Guo; Xiu-Li Chen

Czechoslovak Mathematical Journal (2014)

  • Volume: 64, Issue: 3, page 783-799
  • ISSN: 0011-4642

Abstract

top
Let ( H , α ) be a monoidal Hom-Hopf algebra and ( A , β ) a right ( H , α ) -Hom-comodule algebra. We first introduce the notion of a relative Hom-Hopf module and prove that the functor F from the category of relative Hom-Hopf modules to the category of right ( A , β ) -Hom-modules has a right adjoint. Furthermore, we prove a Maschke type theorem for the category of relative Hom-Hopf modules. In fact, we give necessary and sufficient conditions for the functor that forgets the ( H , α ) -coaction to be separable. This leads to a generalized notion of integrals.

How to cite

top

Guo, Shuangjian, and Chen, Xiu-Li. "A Maschke type theorem for relative Hom-Hopf modules." Czechoslovak Mathematical Journal 64.3 (2014): 783-799. <http://eudml.org/doc/262145>.

@article{Guo2014,
abstract = {Let $(H,\alpha )$ be a monoidal Hom-Hopf algebra and $(A,\beta )$ a right $(H,\alpha )$-Hom-comodule algebra. We first introduce the notion of a relative Hom-Hopf module and prove that the functor $F $ from the category of relative Hom-Hopf modules to the category of right $(A, \beta )$-Hom-modules has a right adjoint. Furthermore, we prove a Maschke type theorem for the category of relative Hom-Hopf modules. In fact, we give necessary and sufficient conditions for the functor that forgets the $(H, \alpha )$-coaction to be separable. This leads to a generalized notion of integrals.},
author = {Guo, Shuangjian, Chen, Xiu-Li},
journal = {Czechoslovak Mathematical Journal},
keywords = {monoidal Hom-Hopf algebra; separable functors; Maschke type theorem; total integral; relative Hom-Hopf module; monoidal Hom-Hopf algebras; separable functors; Maschke type theorems; total integrals; relative Hom-Hopf modules; monoidal categories; splitting sequences},
language = {eng},
number = {3},
pages = {783-799},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A Maschke type theorem for relative Hom-Hopf modules},
url = {http://eudml.org/doc/262145},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Guo, Shuangjian
AU - Chen, Xiu-Li
TI - A Maschke type theorem for relative Hom-Hopf modules
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 3
SP - 783
EP - 799
AB - Let $(H,\alpha )$ be a monoidal Hom-Hopf algebra and $(A,\beta )$ a right $(H,\alpha )$-Hom-comodule algebra. We first introduce the notion of a relative Hom-Hopf module and prove that the functor $F $ from the category of relative Hom-Hopf modules to the category of right $(A, \beta )$-Hom-modules has a right adjoint. Furthermore, we prove a Maschke type theorem for the category of relative Hom-Hopf modules. In fact, we give necessary and sufficient conditions for the functor that forgets the $(H, \alpha )$-coaction to be separable. This leads to a generalized notion of integrals.
LA - eng
KW - monoidal Hom-Hopf algebra; separable functors; Maschke type theorem; total integral; relative Hom-Hopf module; monoidal Hom-Hopf algebras; separable functors; Maschke type theorems; total integrals; relative Hom-Hopf modules; monoidal categories; splitting sequences
UR - http://eudml.org/doc/262145
ER -

References

top
  1. Caenepeel, S., Goyvaerts, I., 10.1080/00927872.2010.490800, Commun. Algebra 39 (2011), 2216-2240. (2011) Zbl1255.16032MR2813174DOI10.1080/00927872.2010.490800
  2. Caenepeel, S., Militaru, G., Ion, B., Zhu, S., 10.1006/aima.1998.1817, Adv. Math. 145 (1999), 239-290. (1999) Zbl0943.18007MR1704577DOI10.1006/aima.1998.1817
  3. Doi, Y., 10.1007/BF02764613, Isr. J. Math. 72 (1990), 99-108. (1990) Zbl0731.16025MR1098982DOI10.1007/BF02764613
  4. Doi, Y., Algebras with total integrals, Commun. Algebra 13 (1985), 2137-2159. (1985) Zbl0576.16004MR0801433
  5. Doi, Y., 10.1080/00927878308822847, Commun. Algebra 11 (1983), 243-255. (1983) Zbl0502.16009MR0688207DOI10.1080/00927878308822847
  6. Frégier, Y., Gohr, A., 10.4303/jglta/G101001, J. Gen. Lie Theory Appl. 4 (2010), Article ID G101001, pages 16. (2010) Zbl1281.17002MR2795570DOI10.4303/jglta/G101001
  7. Hartwig, J. T., Larsson, D., Silvestrov, S. D., 10.1016/j.jalgebra.2005.07.036, J. Algebra 295 (2006), 314-361. (2006) Zbl1138.17012MR2194957DOI10.1016/j.jalgebra.2005.07.036
  8. Makhlouf, A., Silvestrov, S., 10.1142/S0219498810004117, J. Algebra Appl. 9 (2010), 553-589. (2010) Zbl1259.16041MR2718646DOI10.1142/S0219498810004117
  9. Makhlouf, A., Silvestrov, S. D., 10.4303/jglta/S070206, J. Gen. Lie Theory Appl. 2 (2008), 51-64. (2008) Zbl1184.17002MR2399415DOI10.4303/jglta/S070206
  10. Takeuchi, M., 10.1016/0021-8693(79)90093-0, J. Algebra 60 (1979), 452-471. (1979) Zbl0492.16013MR0549940DOI10.1016/0021-8693(79)90093-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.