A Maschke type theorem for relative Hom-Hopf modules
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 3, page 783-799
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGuo, Shuangjian, and Chen, Xiu-Li. "A Maschke type theorem for relative Hom-Hopf modules." Czechoslovak Mathematical Journal 64.3 (2014): 783-799. <http://eudml.org/doc/262145>.
@article{Guo2014,
abstract = {Let $(H,\alpha )$ be a monoidal Hom-Hopf algebra and $(A,\beta )$ a right $(H,\alpha )$-Hom-comodule algebra. We first introduce the notion of a relative Hom-Hopf module and prove that the functor $F $ from the category of relative Hom-Hopf modules to the category of right $(A, \beta )$-Hom-modules has a right adjoint. Furthermore, we prove a Maschke type theorem for the category of relative Hom-Hopf modules. In fact, we give necessary and sufficient conditions for the functor that forgets the $(H, \alpha )$-coaction to be separable. This leads to a generalized notion of integrals.},
author = {Guo, Shuangjian, Chen, Xiu-Li},
journal = {Czechoslovak Mathematical Journal},
keywords = {monoidal Hom-Hopf algebra; separable functors; Maschke type theorem; total integral; relative Hom-Hopf module; monoidal Hom-Hopf algebras; separable functors; Maschke type theorems; total integrals; relative Hom-Hopf modules; monoidal categories; splitting sequences},
language = {eng},
number = {3},
pages = {783-799},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A Maschke type theorem for relative Hom-Hopf modules},
url = {http://eudml.org/doc/262145},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Guo, Shuangjian
AU - Chen, Xiu-Li
TI - A Maschke type theorem for relative Hom-Hopf modules
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 3
SP - 783
EP - 799
AB - Let $(H,\alpha )$ be a monoidal Hom-Hopf algebra and $(A,\beta )$ a right $(H,\alpha )$-Hom-comodule algebra. We first introduce the notion of a relative Hom-Hopf module and prove that the functor $F $ from the category of relative Hom-Hopf modules to the category of right $(A, \beta )$-Hom-modules has a right adjoint. Furthermore, we prove a Maschke type theorem for the category of relative Hom-Hopf modules. In fact, we give necessary and sufficient conditions for the functor that forgets the $(H, \alpha )$-coaction to be separable. This leads to a generalized notion of integrals.
LA - eng
KW - monoidal Hom-Hopf algebra; separable functors; Maschke type theorem; total integral; relative Hom-Hopf module; monoidal Hom-Hopf algebras; separable functors; Maschke type theorems; total integrals; relative Hom-Hopf modules; monoidal categories; splitting sequences
UR - http://eudml.org/doc/262145
ER -
References
top- Caenepeel, S., Goyvaerts, I., 10.1080/00927872.2010.490800, Commun. Algebra 39 (2011), 2216-2240. (2011) Zbl1255.16032MR2813174DOI10.1080/00927872.2010.490800
- Caenepeel, S., Militaru, G., Ion, B., Zhu, S., 10.1006/aima.1998.1817, Adv. Math. 145 (1999), 239-290. (1999) Zbl0943.18007MR1704577DOI10.1006/aima.1998.1817
- Doi, Y., 10.1007/BF02764613, Isr. J. Math. 72 (1990), 99-108. (1990) Zbl0731.16025MR1098982DOI10.1007/BF02764613
- Doi, Y., Algebras with total integrals, Commun. Algebra 13 (1985), 2137-2159. (1985) Zbl0576.16004MR0801433
- Doi, Y., 10.1080/00927878308822847, Commun. Algebra 11 (1983), 243-255. (1983) Zbl0502.16009MR0688207DOI10.1080/00927878308822847
- Frégier, Y., Gohr, A., 10.4303/jglta/G101001, J. Gen. Lie Theory Appl. 4 (2010), Article ID G101001, pages 16. (2010) Zbl1281.17002MR2795570DOI10.4303/jglta/G101001
- Hartwig, J. T., Larsson, D., Silvestrov, S. D., 10.1016/j.jalgebra.2005.07.036, J. Algebra 295 (2006), 314-361. (2006) Zbl1138.17012MR2194957DOI10.1016/j.jalgebra.2005.07.036
- Makhlouf, A., Silvestrov, S., 10.1142/S0219498810004117, J. Algebra Appl. 9 (2010), 553-589. (2010) Zbl1259.16041MR2718646DOI10.1142/S0219498810004117
- Makhlouf, A., Silvestrov, S. D., 10.4303/jglta/S070206, J. Gen. Lie Theory Appl. 2 (2008), 51-64. (2008) Zbl1184.17002MR2399415DOI10.4303/jglta/S070206
- Takeuchi, M., 10.1016/0021-8693(79)90093-0, J. Algebra 60 (1979), 452-471. (1979) Zbl0492.16013MR0549940DOI10.1016/0021-8693(79)90093-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.