Parameter estimation of sub-Gaussian stable distributions
Kybernetika (2014)
- Volume: 50, Issue: 6, page 929-949
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topOmelchenko, Vadym. "Parameter estimation of sub-Gaussian stable distributions." Kybernetika 50.6 (2014): 929-949. <http://eudml.org/doc/262151>.
@article{Omelchenko2014,
abstract = {In this paper, we present a parameter estimation method for sub-Gaussian stable distributions. Our algorithm has two phases: in the first phase, we calculate the average values of harmonic functions of observations and in the second phase, we conduct the main procedure of asymptotic maximum likelihood where those average values are used as inputs. This implies that the main procedure of our method does not depend on the sample size of observations. The main idea of our method lies in representing the partial derivative of the density function with respect to the parameter that we estimate as the sum of harmonic functions and using this representation for finding this parameter. For fifteen summands we get acceptable precision. We demonstrate this methodology on estimating the tail index and the dispersion matrix of sub-Gaussian distributions.},
author = {Omelchenko, Vadym},
journal = {Kybernetika},
keywords = {stable distribution; sub-Gaussian distribution; maximum likelihood; characteristic function; stable distribution; sub-Gaussian distribution; maximum likelihood; characteristic function},
language = {eng},
number = {6},
pages = {929-949},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Parameter estimation of sub-Gaussian stable distributions},
url = {http://eudml.org/doc/262151},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Omelchenko, Vadym
TI - Parameter estimation of sub-Gaussian stable distributions
JO - Kybernetika
PY - 2014
PB - Institute of Information Theory and Automation AS CR
VL - 50
IS - 6
SP - 929
EP - 949
AB - In this paper, we present a parameter estimation method for sub-Gaussian stable distributions. Our algorithm has two phases: in the first phase, we calculate the average values of harmonic functions of observations and in the second phase, we conduct the main procedure of asymptotic maximum likelihood where those average values are used as inputs. This implies that the main procedure of our method does not depend on the sample size of observations. The main idea of our method lies in representing the partial derivative of the density function with respect to the parameter that we estimate as the sum of harmonic functions and using this representation for finding this parameter. For fifteen summands we get acceptable precision. We demonstrate this methodology on estimating the tail index and the dispersion matrix of sub-Gaussian distributions.
LA - eng
KW - stable distribution; sub-Gaussian distribution; maximum likelihood; characteristic function; stable distribution; sub-Gaussian distribution; maximum likelihood; characteristic function
UR - http://eudml.org/doc/262151
ER -
References
top- Carrasco, M., Florens, J., 10.1017/S0266466600166010, Econom. Theory 16 (2000), 767-834. MR1803711DOI10.1017/S0266466600166010
- Chambers, J. M., Mallows, C L., Stuck, B. W., 10.1080/01621459.1976.10480344, J. Amer. Statist. Assoc. 71 1976), 340-344. Zbl0341.65003MR0415982DOI10.1080/01621459.1976.10480344
- Cheng, B. N., Rachev, S., Multivariate stable securities in financial markets., Math. Finance 5 (1995), 133-153.
- DuMouchel, W. H., Stable Distributions in Statistical Inference., PhD. Thesis, University of Ann Arbor, Ann Arbor 1971. Zbl0321.62017MR2620950
- Fama, E., 10.1287/mnsc.11.3.404, Management Sci. 11 (1965), 404-419. Zbl0129.11903DOI10.1287/mnsc.11.3.404
- Hill, B. M., 10.1214/aos/1176343247, Ann. Stat. 3 (1975), 5, 1163-1174. MR0378204DOI10.1214/aos/1176343247
- Horn, R. A., Johnson, C. R., Matrix Analysis., Cambridge University Press 1985. Zbl0801.15001MR0832183
- Kagan, A., Fisher information contained in a finite-dimensional linear space, and a properly formulated version of the method of moments (in Russian)., Problemy Peredachi Informatsii 12 (2009), 15-29. MR0413340
- Klebanov, L., Heavy Tailed Distributions., Matfyzpress, Prague 2003.
- Koutrovelis, I. A., 10.1080/01621459.1980.10477573, J. Amer. Statist. Assoc. 75 (1980), 918-928. MR0600977DOI10.1080/01621459.1980.10477573
- Kring, S., Rachev, S., Höchstötter, M., Fabozzi, F. J., Estimation of Alpha-Stable Sub-Gaussian Distributions for Asset Returns., In: Risk Assessment: Decisions in Banking and Finance. Physica-Verlag, Heidelberg 2008, pp. 111-152. Zbl1154.91601
- Madan, D. B., Seneta, E., 10.1086/296519, J. Bus. 63 (1990), 511-524. DOI10.1086/296519
- Mandelbrot, B., 10.1086/294632, J. Bus. 26 (1963), 394-419. DOI10.1086/294632
- McCulloch, J. H., 10.1080/03610918608812563, Commun. Statist. - Simula 15 (1986), 1109-1136. Zbl0612.62028MR0876783DOI10.1080/03610918608812563
- McCulloch, J. H., 10.1023/A:1008797318867, Comput. Econom. 16 (2000), 47-62. Zbl0964.62108DOI10.1023/A:1008797318867
- Mittnik, S., Rachev, S., Tail estmation of the stable index alpha., Applied mathematics. Letters 9 (1996), 3, 53-56. MR1385999
- Mittnik, S., Paolella, M. S., Prediction of Financial Downside-Risk with Heavy-Tailed Conditional Distributions
- Nolan, J. P., Modeling Financial Data with Stable Distributions., In: Handbook of Heavy Tailed Distributions in Finance, Handbooks in Finance: Book 1 (2003), pp. 105-130.
- Nolan, J. P., Maximum likelihood estimation and diagnostics for stable distributions., In: Lévy Processes (O. E. Barndorff-Nielsen, T. Mikosch, and S. Resnick, eds.), Brikhauser, Boston 2001. Zbl0971.62008MR1833706
- Nolan, J. P., Panorska, A. K., Data analysis for heavy tailed multivariate samples., Commun. Statist.: Stochastic Models (1997), 687-702. Zbl0899.60011MR1482289
- Omelchenko, V., Elliptical stable distributions., In: Mathematical Methods in Economics 2010 (M. Houda and J. Friebelova, eds.), pp. 483-488.
- Ortobelli, S., Huber, I., Rachev, S., Schwarz, E. S., Portfolio Choice Theory with Non-Gaussian Distributed Return., In: Handbook of Heavy Tailed Distributions in Finance, Handbooks in Finance: Book 1 (2003), pp. 547-594.
- Pivato, M., Seco, L., 10.1016/S0047-259X(03)00052-6, J. Multivariate Anal. 87 (2003), 2, 219-240. Zbl1041.60019MR2016936DOI10.1016/S0047-259X(03)00052-6
- Rachev, S. T., Schwarz, E. S., Khindanova, I., Stable Modeling of Market and Credit Value at Risk., In: Handbook of Heavy Tailed Distributions in Finance, Handbooks in Finance: Book 1 (2003), pp. 255-264.
- Samorodnitsky, G., Taqqu, M. S., Stable Non-Gaussian Random Processes., Chapman and Hall 1994. Zbl0925.60027MR1280932
- Schmidt, P., 10.2307/1912640, Econometrica 50 (1982), 501-524. MR0662290DOI10.2307/1912640
- Slámová, L., Klebanov, L., Modeling financial returns by discrete stable distributions., In: Proc. 30th International Conference Mathematical Methods in Economics 2012.
- Tran, K. C., 10.1080/07474939808800410, Econom. Rev. 17 (1998), 167-83. MR1624519DOI10.1080/07474939808800410
- Zolotarev, V., On representation of stable laws by integrals selected translation., Math. Statist. Probab. 6 (1986), 84-88.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.