Parameter estimation of sub-Gaussian stable distributions

Vadym Omelchenko

Kybernetika (2014)

  • Volume: 50, Issue: 6, page 929-949
  • ISSN: 0023-5954

Abstract

top
In this paper, we present a parameter estimation method for sub-Gaussian stable distributions. Our algorithm has two phases: in the first phase, we calculate the average values of harmonic functions of observations and in the second phase, we conduct the main procedure of asymptotic maximum likelihood where those average values are used as inputs. This implies that the main procedure of our method does not depend on the sample size of observations. The main idea of our method lies in representing the partial derivative of the density function with respect to the parameter that we estimate as the sum of harmonic functions and using this representation for finding this parameter. For fifteen summands we get acceptable precision. We demonstrate this methodology on estimating the tail index and the dispersion matrix of sub-Gaussian distributions.

How to cite

top

Omelchenko, Vadym. "Parameter estimation of sub-Gaussian stable distributions." Kybernetika 50.6 (2014): 929-949. <http://eudml.org/doc/262151>.

@article{Omelchenko2014,
abstract = {In this paper, we present a parameter estimation method for sub-Gaussian stable distributions. Our algorithm has two phases: in the first phase, we calculate the average values of harmonic functions of observations and in the second phase, we conduct the main procedure of asymptotic maximum likelihood where those average values are used as inputs. This implies that the main procedure of our method does not depend on the sample size of observations. The main idea of our method lies in representing the partial derivative of the density function with respect to the parameter that we estimate as the sum of harmonic functions and using this representation for finding this parameter. For fifteen summands we get acceptable precision. We demonstrate this methodology on estimating the tail index and the dispersion matrix of sub-Gaussian distributions.},
author = {Omelchenko, Vadym},
journal = {Kybernetika},
keywords = {stable distribution; sub-Gaussian distribution; maximum likelihood; characteristic function; stable distribution; sub-Gaussian distribution; maximum likelihood; characteristic function},
language = {eng},
number = {6},
pages = {929-949},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Parameter estimation of sub-Gaussian stable distributions},
url = {http://eudml.org/doc/262151},
volume = {50},
year = {2014},
}

TY - JOUR
AU - Omelchenko, Vadym
TI - Parameter estimation of sub-Gaussian stable distributions
JO - Kybernetika
PY - 2014
PB - Institute of Information Theory and Automation AS CR
VL - 50
IS - 6
SP - 929
EP - 949
AB - In this paper, we present a parameter estimation method for sub-Gaussian stable distributions. Our algorithm has two phases: in the first phase, we calculate the average values of harmonic functions of observations and in the second phase, we conduct the main procedure of asymptotic maximum likelihood where those average values are used as inputs. This implies that the main procedure of our method does not depend on the sample size of observations. The main idea of our method lies in representing the partial derivative of the density function with respect to the parameter that we estimate as the sum of harmonic functions and using this representation for finding this parameter. For fifteen summands we get acceptable precision. We demonstrate this methodology on estimating the tail index and the dispersion matrix of sub-Gaussian distributions.
LA - eng
KW - stable distribution; sub-Gaussian distribution; maximum likelihood; characteristic function; stable distribution; sub-Gaussian distribution; maximum likelihood; characteristic function
UR - http://eudml.org/doc/262151
ER -

References

top
  1. Carrasco, M., Florens, J., 10.1017/S0266466600166010, Econom. Theory 16 (2000), 767-834. MR1803711DOI10.1017/S0266466600166010
  2. Chambers, J. M., Mallows, C L., Stuck, B. W., 10.1080/01621459.1976.10480344, J. Amer. Statist. Assoc. 71 1976), 340-344. Zbl0341.65003MR0415982DOI10.1080/01621459.1976.10480344
  3. Cheng, B. N., Rachev, S., Multivariate stable securities in financial markets., Math. Finance 5 (1995), 133-153. 
  4. DuMouchel, W. H., Stable Distributions in Statistical Inference., PhD. Thesis, University of Ann Arbor, Ann Arbor 1971. Zbl0321.62017MR2620950
  5. Fama, E., 10.1287/mnsc.11.3.404, Management Sci. 11 (1965), 404-419. Zbl0129.11903DOI10.1287/mnsc.11.3.404
  6. Hill, B. M., 10.1214/aos/1176343247, Ann. Stat. 3 (1975), 5, 1163-1174. MR0378204DOI10.1214/aos/1176343247
  7. Horn, R. A., Johnson, C. R., Matrix Analysis., Cambridge University Press 1985. Zbl0801.15001MR0832183
  8. Kagan, A., Fisher information contained in a finite-dimensional linear space, and a properly formulated version of the method of moments (in Russian)., Problemy Peredachi Informatsii 12 (2009), 15-29. MR0413340
  9. Klebanov, L., Heavy Tailed Distributions., Matfyzpress, Prague 2003. 
  10. Koutrovelis, I. A., 10.1080/01621459.1980.10477573, J. Amer. Statist. Assoc. 75 (1980), 918-928. MR0600977DOI10.1080/01621459.1980.10477573
  11. Kring, S., Rachev, S., Höchstötter, M., Fabozzi, F. J., Estimation of Alpha-Stable Sub-Gaussian Distributions for Asset Returns., In: Risk Assessment: Decisions in Banking and Finance. Physica-Verlag, Heidelberg 2008, pp. 111-152. Zbl1154.91601
  12. Madan, D. B., Seneta, E., 10.1086/296519, J. Bus. 63 (1990), 511-524. DOI10.1086/296519
  13. Mandelbrot, B., 10.1086/294632, J. Bus. 26 (1963), 394-419. DOI10.1086/294632
  14. McCulloch, J. H., 10.1080/03610918608812563, Commun. Statist. - Simula 15 (1986), 1109-1136. Zbl0612.62028MR0876783DOI10.1080/03610918608812563
  15. McCulloch, J. H., 10.1023/A:1008797318867, Comput. Econom. 16 (2000), 47-62. Zbl0964.62108DOI10.1023/A:1008797318867
  16. Mittnik, S., Rachev, S., Tail estmation of the stable index alpha., Applied mathematics. Letters 9 (1996), 3, 53-56. MR1385999
  17. Mittnik, S., Paolella, M. S., Prediction of Financial Downside-Risk with Heavy-Tailed Conditional Distributions 
  18. Nolan, J. P., Modeling Financial Data with Stable Distributions., In: Handbook of Heavy Tailed Distributions in Finance, Handbooks in Finance: Book 1 (2003), pp. 105-130. 
  19. Nolan, J. P., Maximum likelihood estimation and diagnostics for stable distributions., In: Lévy Processes (O. E. Barndorff-Nielsen, T. Mikosch, and S. Resnick, eds.), Brikhauser, Boston 2001. Zbl0971.62008MR1833706
  20. Nolan, J. P., Panorska, A. K., Data analysis for heavy tailed multivariate samples., Commun. Statist.: Stochastic Models (1997), 687-702. Zbl0899.60011MR1482289
  21. Omelchenko, V., Elliptical stable distributions., In: Mathematical Methods in Economics 2010 (M. Houda and J. Friebelova, eds.), pp. 483-488. 
  22. Ortobelli, S., Huber, I., Rachev, S., Schwarz, E. S., Portfolio Choice Theory with Non-Gaussian Distributed Return., In: Handbook of Heavy Tailed Distributions in Finance, Handbooks in Finance: Book 1 (2003), pp. 547-594. 
  23. Pivato, M., Seco, L., 10.1016/S0047-259X(03)00052-6, J. Multivariate Anal. 87 (2003), 2, 219-240. Zbl1041.60019MR2016936DOI10.1016/S0047-259X(03)00052-6
  24. Rachev, S. T., Schwarz, E. S., Khindanova, I., Stable Modeling of Market and Credit Value at Risk., In: Handbook of Heavy Tailed Distributions in Finance, Handbooks in Finance: Book 1 (2003), pp. 255-264. 
  25. Samorodnitsky, G., Taqqu, M. S., Stable Non-Gaussian Random Processes., Chapman and Hall 1994. Zbl0925.60027MR1280932
  26. Schmidt, P., 10.2307/1912640, Econometrica 50 (1982), 501-524. MR0662290DOI10.2307/1912640
  27. Slámová, L., Klebanov, L., Modeling financial returns by discrete stable distributions., In: Proc. 30th International Conference Mathematical Methods in Economics 2012. 
  28. Tran, K. C., 10.1080/07474939808800410, Econom. Rev. 17 (1998), 167-83. MR1624519DOI10.1080/07474939808800410
  29. Zolotarev, V., On representation of stable laws by integrals selected translation., Math. Statist. Probab. 6 (1986), 84-88. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.