Some properties of the distance Laplacian eigenvalues of a graph
Mustapha Aouchiche; Pierre Hansen
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 3, page 751-761
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topReferences
top- Aouchiche, M., Bonnefoy, J. M., Fidahoussen, A., Caporossi, G., Hansen, P., Hiesse, L., Lacheré, J., Monhait, A., Variable neighborhood search for extremal graphs. XIV: The AutoGraphiX 2 system, Global Optimization. From Theory to Implementation Nonconvex Optim. Appl. 84 Springer, New York (2006), 281-310 L. Liberti et al. (2006) Zbl1100.90052MR2206957
- Aouchiche, M., Caporossi, G., Hansen, P., Variable neighborhood search for extremal graphs. 20. Automated comparison of graph invariants, MATCH Commun. Math. Comput. Chem. 58 (2007), 365-384. (2007) Zbl1274.05235MR2357366
- Aouchiche, M., Hansen, P., Two Laplacians for the distance matrix of a graph, Linear Algebra Appl. 439 (2013), 21-33. (2013) Zbl1282.05086MR3045220
- G. A. Baker, Jr., 10.1063/1.1704911, J. Math. Phys. 7 (1966), 2238-2242. (1966) Zbl0203.27401DOI10.1063/1.1704911
- Brouwer, A. E., Haemers, W. H., Spectra of Graphs, Universitext Springer, Berlin (2012). (2012) Zbl1231.05001MR2882891
- Caporossi, G., Hansen, P., 10.1016/S0012-365X(99)00206-X, Discrete Math. 212 (2000), 29-44 (J. Harant et al., eds.). (2000) Zbl0947.90130MR1748671DOI10.1016/S0012-365X(99)00206-X
- Collatz, L., Sinogowitz, U., 10.1007/BF02941924, Abh. Math. Semin. Univ. Hamb. 21 German (1957), 63-77. (1957) Zbl0077.36704MR0087952DOI10.1007/BF02941924
- Cvetković, D. M., Graphs and their spectra, Publ. Fac. Electrotech. Univ. Belgrade, Ser. Math. Phys. 354-356 (1971), 1-50. (1971) Zbl0238.05102MR0299508
- Cvetković, D. M., Doob, M., Gutman, I., Torgašev, A., Recent Results in the Theory of Graph Spectra, Annals of Discrete Mathematics 36 North-Holland, Amsterdam (1988). (1988) Zbl0634.05054MR0926481
- Cvetković, D. M., Doob, M., Sachs, H., Spectra of Graphs. Theory and Applications, J. A. Barth Verlag, Leipzig (1995). (1995) Zbl0824.05046MR1324340
- Cvetković, D. M., Rowlinson, P., Simić, S., An Introduction to the Theory of Graph Spectra, London Mathematical Society Student Texts 75 Cambridge University Press, Cambridge (2010). (2010) Zbl1211.05002MR2571608
- Fiedler, M., Algebraic connectivity of graphs, Czech. Math. J. 23 (1973), 298-305. (1973) Zbl0265.05119MR0318007
- Fujii, H., Katsuda, A., 10.1016/S0012-365X(99)00133-8, Discrete Math. 207 (1999), 33-52. (1999) Zbl1131.05309MR1710481DOI10.1016/S0012-365X(99)00133-8
- Günthard, H. H., Primas, H., 10.1002/hlca.19560390623, Helv. Chim. Acta 39 (1956), 1645-1653 German. (1956) DOI10.1002/hlca.19560390623
- Haemers, W. H., Spence, E., 10.1016/S0195-6698(03)00100-8, Eur. J. Comb. 25 (2004), 199-211. (2004) Zbl1033.05070MR2070541DOI10.1016/S0195-6698(03)00100-8
- Halbeisen, L., Hungerbühler, N., 10.1002/(SICI)1097-0118(199907)31:3<255::AID-JGT7>3.0.CO;2-6, J. Graph Theory 31 (1999), 255-265. (1999) Zbl0932.05053MR1688950DOI10.1002/(SICI)1097-0118(199907)31:3<255::AID-JGT7>3.0.CO;2-6
- Holton, D. A., Sheehan, J., The Petersen Graph, Australian Mathematical Society Lecture Series 7 Cambridge University Press, Cambridge (1993). (1993) Zbl0781.05001MR1232658
- Marcus, M., Minc, H., A Survey of Matrix Theory and Matrix Inequalities. Reprint of the 1969 edition, Dover Publications, New York (1992). (1992) MR1215484
- McKay, B. D., On the spectral characterisation of trees, Ars Comb. 3 (1977), 219-232. (1977) Zbl0404.05045MR0543669
- Merris, R., 10.1080/03081089708818525, Linear Multilinear Algebra 43 (1997), 201-205. (1997) Zbl0887.05036MR1613203DOI10.1080/03081089708818525
- Merris, R., Laplacian matrices of graphs: A survey, Second Conference of the International Linear Algebra Society, Lisbon, 1992 (J. D. da Silva et al., eds.) Linear Algebra Appl. 197-198 (1994), 143-176. (1994) Zbl0802.05053MR1275613
- Mohar, B., Graph Laplacians, Topics in Algebraic Graph Theory Encyclopedia of Mathematics and its Applications 102 Cambridge University Press, Cambridge (2004), 113-136 L. W. Beineke et al. (2004) Zbl1161.05334MR2125091
- Schwenk, A. J., Almost all trees are cospectral, New Directions in the Theory of Graphs. Proc. Third Ann Arbor Conf., Univ. Michigan, Ann Arbor, Mich., 1971 Academic Press, New York (1973), 275-307 F. Harary. (1973) MR0384582
- Tan, J., On isospectral graphs, Interdiscip. Inf. Sci. 4 (1998), 117-124. (1998) Zbl0926.05027MR1664212
- Dam, E. R. van, Haemers, W. H., Which graphs are determined by their spectrum?, Special Issue on the Combinatorial Matrix Theory Conference, Pohang, 2002 Linear Algebra Appl. 373 (2003), 241-272. (2003) MR2022290