Stability and contagion measures for spatial extreme value analyzes
Cecília Fonseca; Helena Ferreira; Luísa Pereira; Ana Paula Martins
Kybernetika (2014)
- Volume: 50, Issue: 6, page 914-928
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topFonseca, Cecília, et al. "Stability and contagion measures for spatial extreme value analyzes." Kybernetika 50.6 (2014): 914-928. <http://eudml.org/doc/262162>.
@article{Fonseca2014,
abstract = {As part of global climate change an accelerated hydrologic cycle (including an increase in heavy precipitation) is anticipated (Trenberth [20, 21]). So, it is of great importance to be able to quantify high-impact hydrologic relationships, for example, the impact that an extreme precipitation (or temperature) in a location has on a surrounding region. Building on the Multivariate Extreme Value Theory we propose a contagion index and a stability index. The contagion index makes it possible to quantify the effect that an exceedance above a high threshold can have on a region. The stability index reflects the expected number of crossings of a high threshold in a region associated to a specific location $i$, given the occurrence of at least one crossing at that location. We will find some relations with well-known extremal dependence measures found in the literature, which will provide immediate estimators. For these estimators an application to the annual maxima precipitation in Portuguese regions is presented.},
author = {Fonseca, Cecília, Ferreira, Helena, Pereira, Luísa, Martins, Ana Paula},
journal = {Kybernetika},
keywords = {spatial extremes; max-stable processes; extremal dependence; climate change; multivariate extreme value theory; hydrologic relationships; contagion measures; spatial extremes; max-stable processes; extremal dependence},
language = {eng},
number = {6},
pages = {914-928},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Stability and contagion measures for spatial extreme value analyzes},
url = {http://eudml.org/doc/262162},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Fonseca, Cecília
AU - Ferreira, Helena
AU - Pereira, Luísa
AU - Martins, Ana Paula
TI - Stability and contagion measures for spatial extreme value analyzes
JO - Kybernetika
PY - 2014
PB - Institute of Information Theory and Automation AS CR
VL - 50
IS - 6
SP - 914
EP - 928
AB - As part of global climate change an accelerated hydrologic cycle (including an increase in heavy precipitation) is anticipated (Trenberth [20, 21]). So, it is of great importance to be able to quantify high-impact hydrologic relationships, for example, the impact that an extreme precipitation (or temperature) in a location has on a surrounding region. Building on the Multivariate Extreme Value Theory we propose a contagion index and a stability index. The contagion index makes it possible to quantify the effect that an exceedance above a high threshold can have on a region. The stability index reflects the expected number of crossings of a high threshold in a region associated to a specific location $i$, given the occurrence of at least one crossing at that location. We will find some relations with well-known extremal dependence measures found in the literature, which will provide immediate estimators. For these estimators an application to the annual maxima precipitation in Portuguese regions is presented.
LA - eng
KW - spatial extremes; max-stable processes; extremal dependence; climate change; multivariate extreme value theory; hydrologic relationships; contagion measures; spatial extremes; max-stable processes; extremal dependence
UR - http://eudml.org/doc/262162
ER -
References
top- Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J., Statistics of Extremes: Theory and Applications., John Wiley, 2004. Zbl1070.62036MR2108013
- Coles, S. G., Regional modelling of extreme storms via max-stable processes., J. R. Stat. Soc. Ser. B 55 (1993), 797-816. Zbl0781.60041MR1229882
- Davison, A. C., Huser, R., Space-time modelling of extreme events., J. R. Stat. Soc. Ser. B 76 (2013), 439-461. MR3164873
- Einmahl, J., Li, J., Liu, R., Extreme value theory approach to simultaneous monitoring and thresholding of multiple risk indicators., CentER Discussion Paper (Int. Rep. 2006-104) Econometrics, 2006.
- Ferreira, H., 10.1016/j.spl.2011.01.014, Stat. Probab. Lett. 81 (2011), 586-591. Zbl1209.62122MR2772916DOI10.1016/j.spl.2011.01.014
- Ferreira, H., Ferreira, M., 10.1007/s11749-011-0261-3, Test 21 (2012), 566-583. Zbl1275.62047MR2983238DOI10.1007/s11749-011-0261-3
- Fonseca, C., Pereira, L., Ferreira, H., Martins, A. P., Generalized madogram and pairwise dependence of maxima over two disjoint regions of a random field., arXiv: http://arxiv.org/pdf/1104.2637v2.pdf, 2012.
- Geluk, J. L., Haan, L. De, Vries, C. G. De, Weak and strong financial fragility., Tinbergen Institute Discussion Paper, TI 2007-023/2.
- Krajina, A., An M-Estimator of Multivariate Dependence Concepts., Tilburg University Press, Tilburg 2010.
- Li, H., Orthant tail dependence of multivariate extreme value distributions., J. Multivariate Anal. 46 (2009), 262-282. Zbl1151.62041MR2460490
- Resnick, S. I., Extreme Values, Regular Variation and Point Processes., Springer-Verlag, Berlin 1987. Zbl1136.60004MR0900810
- Schlather, M., 10.1023/A:1020977924878, Extremes 5 (2002), 33-44. Zbl1035.60054MR1947786DOI10.1023/A:1020977924878
- Schlather, M., Tawn, J., 10.1093/biomet/90.1.139, Biometrika 90 (2003), 139-156. Zbl1035.62045MR1966556DOI10.1093/biomet/90.1.139
- Schmidt, R., 10.1007/s001860200191, Math. Methods Oper. Res. 55 (2002), 301-327. MR1919580DOI10.1007/s001860200191
- Schmidt, R., Stadmüller, U., 10.1111/j.1467-9469.2005.00483.x, Scand. J. Stat. 33 (2006), 307-335. MR2279645DOI10.1111/j.1467-9469.2005.00483.x
- Sibuya, M., 10.1007/BF01682329, Ann. Inst. Stat. Math. 11 (1960), 195-210. Zbl0095.33703MR0115241DOI10.1007/BF01682329
- Smith, R. L., Max-stable processes and spatial extremes., Unpublished manuscript. http://www.stat.unc.edu/postscript/rs/spatex.pdf, 1990.
- Smith, R. L., Weissman, I., Characterization and estimation of the multivariate extremal index., Technical Report, Department of Statistics, University of North Carolina. http://www.stat.unc.edu/postscript/rs/extremal.pdf, 1996.
- Oliveira, J. Tiago de, Structure theory of bivariate extremes, extensions., Est. Mat., Est. and Econ. 7 (1992/93), 165-195. MR1229356
- Trenberth, K. E., 10.1023/A:1005319109110, Climate Change 39 (1998), 667-694. DOI10.1023/A:1005319109110
- Trenberth, K. E., 10.1023/A:1005488920935, Climate Change 42 (1999) 327-339. DOI10.1023/A:1005488920935
- Zhang, Z., Smith, R. L., 10.1239/jap/1101840556, J. Appl. Probab. 41 (2004), 1113-1123. Zbl1122.60052MR2122805DOI10.1239/jap/1101840556
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.