Zero Dissipative DIRKN Pairs of Order 5(4) for Solving Special Second Order IVPs
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2014)
- Volume: 53, Issue: 2, page 53-69
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topImoni, S. O., and Ikhile, M. N. O.. "Zero Dissipative DIRKN Pairs of Order 5(4) for Solving Special Second Order IVPs." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 53.2 (2014): 53-69. <http://eudml.org/doc/262164>.
@article{Imoni2014,
abstract = {For initial value problem (IVPs) in ordinary second order differential equations of the special form $y^\{\prime \prime \}=f\left(x,y\right)$ possessing oscillating solutions, diagonally implicit Runge–Kutta–Nystrom (DIRKN) formula-pairs of orders 5(4) in 5-stages are derived in this paper. The method is zero dissipative, thus it possesses a non-empty interval of periodicity. Some numerical results are presented to show the applicability of the new method compared with existing Runge–Kutta (RK) method applied to the problem reduced to first-order system.},
author = {Imoni, S. O., Ikhile, M. N. O.},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Initial value problems; Runge–Kutta–Nystrom pairs; zero dissipative; initial value problems; Runge-Kutta-Nystrom pairs; zero dissipative; oscillating solutions; numerical result},
language = {eng},
number = {2},
pages = {53-69},
publisher = {Palacký University Olomouc},
title = {Zero Dissipative DIRKN Pairs of Order 5(4) for Solving Special Second Order IVPs},
url = {http://eudml.org/doc/262164},
volume = {53},
year = {2014},
}
TY - JOUR
AU - Imoni, S. O.
AU - Ikhile, M. N. O.
TI - Zero Dissipative DIRKN Pairs of Order 5(4) for Solving Special Second Order IVPs
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2014
PB - Palacký University Olomouc
VL - 53
IS - 2
SP - 53
EP - 69
AB - For initial value problem (IVPs) in ordinary second order differential equations of the special form $y^{\prime \prime }=f\left(x,y\right)$ possessing oscillating solutions, diagonally implicit Runge–Kutta–Nystrom (DIRKN) formula-pairs of orders 5(4) in 5-stages are derived in this paper. The method is zero dissipative, thus it possesses a non-empty interval of periodicity. Some numerical results are presented to show the applicability of the new method compared with existing Runge–Kutta (RK) method applied to the problem reduced to first-order system.
LA - eng
KW - Initial value problems; Runge–Kutta–Nystrom pairs; zero dissipative; initial value problems; Runge-Kutta-Nystrom pairs; zero dissipative; oscillating solutions; numerical result
UR - http://eudml.org/doc/262164
ER -
References
top- Allen, R. C., Wing, G. M., 10.1016/0021-9991(74)90004-7, J. Computer Physics 14 (1974), 40–45. (1974) Zbl0273.65065MR0381323DOI10.1016/0021-9991(74)90004-7
- Butcher, J. C., Chen, D. J., 10.1016/S0168-9274(99)00126-9, Applied Numerical Mathematics 34 (2000), 179–188. (2000) Zbl0954.65058MR1770422DOI10.1016/S0168-9274(99)00126-9
- Dormand, J. R., El-Mikkawy, M. E. A., Prince, P. J., 10.1093/imanum/7.2.235, IMA J. Num. Analysis 7 (1987), 235–250. (1987) MR0968090DOI10.1093/imanum/7.2.235
- El-Mikkawy, M., El-Dousky, R. A., 10.1016/S0096-3003(02)00436-8, Applied Mathematics and computer 145 (2003), 33–43. (2003) MR2005974DOI10.1016/S0096-3003(02)00436-8
- Fehlberg, E., Classical eight and lower-order Runge–Kutta–Nystrom formulae with step size control for the special second-order differential equations, Technical Report, R-381, NASA, 1972. (1972)
- Fillipi, S., Graf, J., New Runge–Kutta–Nystrom Formulae pairs of order , , and for differential equation of the form , J. computing Appl. Math. 14 (1986), 362–370. (1986) MR0831080
- Ferracina, L., Spijker, M. N., 10.1016/j.apnum.2007.10.004, Applied Numerical Mathematics 58 (2008), 1675–1686. (2008) Zbl1153.65080MR2458475DOI10.1016/j.apnum.2007.10.004
- Hairer, E., Norsett, S. P., Wanner, G., Solving Ordinary Differential Equations I, Non Stiff problems, springer-Verlag, Berlin, 1993. (1993) MR1227985
- Imoni, S. O., Otunta, F. O., Ramamohan, T. R., 10.1080/00207160601084505, International Journal of Computer Mathematics 83, 11 (2006), 777–784. (2006) Zbl1111.65066MR2284139DOI10.1080/00207160601084505
- Imoni, S. O., Otunta, F. O., Ikhile, M. N. O., Embedded diagonally implicit Runge–Kutta–Nystrom method of order two and three for special second order differential equations, The Journal of the Mathematical Association of Nigeria (ABACUS) 34, 213 (2007), 363–373. (2007)
- Kanagarajam, K., Sambath, M., Runge–Kutta–Nystrom method of order three for solving Fuzzy Differential Equations, Computational methods in Applied Mathematics 10, 2 (2010), 195–203. (2010) MR2770290
- Papakostas, S. N., Tsitouras, Ch., 10.1137/S1064827597315509, SIAM J. Sci. Comput. 21 (2002), 747–763. (2002) MR1718695DOI10.1137/S1064827597315509
- Qinghong, Li, Yongzhong, S., Explicit one-step p-stable methods for second order periodic initial value problems, Numerical Mathematics, Journal of Chinese Universities (English series) 15, 3 (2006), 237–247. (2006) Zbl1132.65066MR2296247
- Sharp, P. W., Fine, J. M., 10.1016/0377-0427(92)90082-9, J. Comput. Appl. Math 42 (1992), 293–308. (1992) Zbl0765.65082MR1187675DOI10.1016/0377-0427(92)90082-9
- Sharp, P. W., Fine, J. M., Burrage, K., 10.1093/imanum/10.4.489, IMA Journal Numerical Analysis 10 (1990), 489–504. (1990) Zbl0711.65057MR1078506DOI10.1093/imanum/10.4.489
- Sommeijer, B. P., 10.1016/0377-0427(87)90208-1, J. Comput. Appl. Math. 19 (1987), 395–399. (1987) Zbl0637.65065MR0907809DOI10.1016/0377-0427(87)90208-1
- Simos, T. E., Famelis, I. T., Tsitouras, Ch., 10.1023/A:1026167824656, Numerical Algorithms 34 (2003), 27–40. (2003) Zbl1031.65080MR2015576DOI10.1023/A:1026167824656
- Simos, T. E., Dimas, E., Sideridis, A. B., 10.1016/0377-0427(92)00114-O, J. Computational and Applied Maths. 51 (1994), 317–326. (1994) Zbl0872.65066MR1300319DOI10.1016/0377-0427(92)00114-O
- Van der Houwen, P. J., Sommeijer, B. P., 10.1137/0726023, SIAM J. Numerical Analysis 26, 2 (1989), 414–429. (1989) Zbl0676.65072MR0987398DOI10.1137/0726023
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.