Comparison of the 3D Numerical Schemes for Solving Curvature Driven Level Set Equation Based on Discrete Duality Finite Volumes
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2014)
- Volume: 53, Issue: 2, page 71-83
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topReferences
top- Andreianov, B., Bendahmare, M., Karlsen, K. H., A Gradient Reconstruction Formula for Finite Volume Schemes and Discrete Duality, In: Finite Volume For Complex Applications, Problems And Perspectives. 5th International Conference, Wiley, London, 2008, 161–168. (2008) MR2451403
- Andreianov, B., Boyer, F., Hubert, F., 10.1002/num.20170, Numerical Methods PDE 23, 1 (2007), 145–195. (2007) Zbl1111.65101MR2275464DOI10.1002/num.20170
- Coudiére, Y., Hubert, F., A 3D discrete duality finite volume method for nonlinear elliptic equations, Algoritmy 2009 (2009), 51–60. (2009) Zbl1171.65441
- Evans, L. C., Spruck, J., Motion of the level sets by mean curvature I, J. Differential Geometry 3 (1991), 635–681. (1991) MR1100206
- Eymard, R., Gallouë, T., Herbin, R., Finite volume methods, Handbook of Numerical Analysis (Ph., Ciarlet, J. L., Lions, eds.), 3 (2000), 713–1018. (2000) MR1804748
- Handlovičová, A., Kotorová, D., Stability of the semi-implicit discrete duality finite volume scheme for the curvature driven level set equation in 2D, Tatra Mountains Mathematical Publications, accepted.
- Hermeline, F., 10.1016/j.jcp.2009.05.002, Journal of Computational Physics 228, 16 (2009), 5763–5786. (2009) Zbl1168.76340MR2542915DOI10.1016/j.jcp.2009.05.002
- Kotorová, D., Discrete duality finite volume scheme for the curvature-driven level set equation, Acta Polytechnica Hungarica 8, 3 (2011), 7–12. (2011)
- Kotorová, D., Discrete duality finite volume scheme for the curvature driven level set equation in 3D, In: Advances in architectural, civil and environmental engineering [electronic source]: 22nd Annual PhD Student Conference, Nakl. STU, Bratislava, 2012, 33–39. (2012)
- Kotorová, D., 3D numerical schemes for the level set equation based on discrete duality finite volumes, to appear.
- Sethian, J. A., Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Material Science, Cambridge University Press, New York, 1999. (1999) MR1700751