An efficient estimator for Gibbs random fields

Martin Janžura

Kybernetika (2014)

  • Volume: 50, Issue: 6, page 883-895
  • ISSN: 0023-5954

Abstract

top
An efficient estimator for the expectation f P ̣ is constructed, where P is a Gibbs random field, and f is a local statistic, i. e. a functional depending on a finite number of coordinates. The estimator coincides with the empirical estimator under the conditions stated in Greenwood and Wefelmeyer [6], and covers the known special cases, namely the von Mises statistic for the i.i.d. underlying fields and the case of one-dimensional Markov chains.

How to cite

top

Janžura, Martin. "An efficient estimator for Gibbs random fields." Kybernetika 50.6 (2014): 883-895. <http://eudml.org/doc/262168>.

@article{Janžura2014,
abstract = {An efficient estimator for the expectation $\int f P̣$ is constructed, where $P$ is a Gibbs random field, and $f$ is a local statistic, i. e. a functional depending on a finite number of coordinates. The estimator coincides with the empirical estimator under the conditions stated in Greenwood and Wefelmeyer [6], and covers the known special cases, namely the von Mises statistic for the i.i.d. underlying fields and the case of one-dimensional Markov chains.},
author = {Janžura, Martin},
journal = {Kybernetika},
keywords = {Gibbs random field; efficient estimator; empirical estimator; Gibbs random field; efficient estimator; empirical estimator},
language = {eng},
number = {6},
pages = {883-895},
publisher = {Institute of Information Theory and Automation AS CR},
title = {An efficient estimator for Gibbs random fields},
url = {http://eudml.org/doc/262168},
volume = {50},
year = {2014},
}

TY - JOUR
AU - Janžura, Martin
TI - An efficient estimator for Gibbs random fields
JO - Kybernetika
PY - 2014
PB - Institute of Information Theory and Automation AS CR
VL - 50
IS - 6
SP - 883
EP - 895
AB - An efficient estimator for the expectation $\int f P̣$ is constructed, where $P$ is a Gibbs random field, and $f$ is a local statistic, i. e. a functional depending on a finite number of coordinates. The estimator coincides with the empirical estimator under the conditions stated in Greenwood and Wefelmeyer [6], and covers the known special cases, namely the von Mises statistic for the i.i.d. underlying fields and the case of one-dimensional Markov chains.
LA - eng
KW - Gibbs random field; efficient estimator; empirical estimator; Gibbs random field; efficient estimator; empirical estimator
UR - http://eudml.org/doc/262168
ER -

References

top
  1. Bickel, P. J., Klaassen, C. A. J., Ritov, Y., Wellner, J. A., Efficient and Adaptive Estimation for Semiparametric Models., Johns Hopkins University Press, Baltimore 1993. Zbl0894.62005MR1245941
  2. Dobrushin, R. L., 10.1137/1115049, Theor. Probab. Appl. 15 (1970), 458-486. Zbl0264.60037DOI10.1137/1115049
  3. Dobrushin, R. L., Nahapetian, B. S., Strong convexity of the pressure for lattice systems of classical physics (in Russian)., Teoret. Mat. Fiz. 20 (1974), 223-234. MR0468967
  4. Georgii, H. O., Gibbs Measures and Phase Transitions., De Gruyter Studies in Mathematics 9, De Gruyter, Berlin 1988. Zbl1225.60001MR0956646
  5. Greenwood, P. E., Wefelmeyer, W., 10.1214/aos/1176324459, Ann. Statist. 23 (1995), 132-143. Zbl0822.62067MR1331660DOI10.1214/aos/1176324459
  6. Greenwood, P. E., Wefelmeyer, W., 10.1023/A:1009993904851, Stat. Inference Stoch. Process. 2 (1999), 119-134. Zbl0961.62084MR1918878DOI10.1023/A:1009993904851
  7. Gross, K., 10.1007/BF01008479, J. Statist. Phys. 25 (1981), 57-72. MR0610692DOI10.1007/BF01008479
  8. Hájek, J., 10.1007/BF00533669, Wahrsch. Verw. Gebiete 14 (1970), 323-330. Zbl0193.18001MR0283911DOI10.1007/BF00533669
  9. Janžura, M., Statistical analysis of Gibbs random fields., In: Trans. 10th Prague Conference on Inform. Theory, Stat. Dec. Functions, Random Processes, Prague 1984, pp. 429-438. Zbl0708.62092MR1136301
  10. Janžura, M., Local asymptotic normality for Gibbs random fields., In: Proc. Fourth Prague Symposium on Asymptotic Statistics (P. Mandl and M. Hušková, eds.), Charles University, Prague 1989, pp. 275-284. Zbl0697.62091MR1051446
  11. Janžura, M., Asymptotic behaviour of the error probabilities in the pseudo-likelihood ratio test for Gibbs-Markov distributions., In: Prof. Asymptotic Statistics (P. Mandl and M. Hušková, eds.), Physica-Verlag, Heidelberg 1994, pp. 285-296. MR1311947
  12. Janžura, M., Asymptotic results in parameter estimation for Gibbs random fields., Kybernetika 33 (1997), 2, 133-159. Zbl0962.62092MR1454275
  13. Janžura, M., On the concept of the asymptotic Rényi distances for random fields., Kybernetika 35 (1999), 3, 353-366. Zbl1274.62061MR1704671
  14. Künsch, H., 10.1007/BF01208568, Comm. Math. Phys. 84 (1982), 207-222. MR0661133DOI10.1007/BF01208568
  15. Younes, L., 10.1007/BF00341287, Probab. Theory Rel. Fields 82 (1989), 625-645. MR1002904DOI10.1007/BF00341287

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.