Risk aversion, prudence and mixed optimal saving models
Kybernetika (2014)
- Volume: 50, Issue: 5, page 706-724
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topGeorgescu, Irina. "Risk aversion, prudence and mixed optimal saving models." Kybernetika 50.5 (2014): 706-724. <http://eudml.org/doc/262176>.
@article{Georgescu2014,
abstract = {The paper studies risk aversion and prudence of an agent in the face of a risk situation with two parameters, one described by a fuzzy number, the other described by a fuzzy variable. The first contribution of the paper is the characterization of risk aversion and prudence in mixed models by conditions on the concavity and the convexity of the agent's utility function and its partial derivatives. The second contribution is the building of mixed models of optimal saving and their connection with the concept of prudence and downside risk aversion.},
author = {Georgescu, Irina},
journal = {Kybernetika},
keywords = {possibilistic risk aversion; prudence; optimal saving; possibilistic risk aversion; prudence; optimal saving},
language = {eng},
number = {5},
pages = {706-724},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Risk aversion, prudence and mixed optimal saving models},
url = {http://eudml.org/doc/262176},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Georgescu, Irina
TI - Risk aversion, prudence and mixed optimal saving models
JO - Kybernetika
PY - 2014
PB - Institute of Information Theory and Automation AS CR
VL - 50
IS - 5
SP - 706
EP - 724
AB - The paper studies risk aversion and prudence of an agent in the face of a risk situation with two parameters, one described by a fuzzy number, the other described by a fuzzy variable. The first contribution of the paper is the characterization of risk aversion and prudence in mixed models by conditions on the concavity and the convexity of the agent's utility function and its partial derivatives. The second contribution is the building of mixed models of optimal saving and their connection with the concept of prudence and downside risk aversion.
LA - eng
KW - possibilistic risk aversion; prudence; optimal saving; possibilistic risk aversion; prudence; optimal saving
UR - http://eudml.org/doc/262176
ER -
References
top- Arrow, K. J., Essays in the theory of risk bearing., North-Holland, Amsterdam 1970. Zbl0215.58602MR0363427
- Carlsson, C., Fullér, R., On possibilistic mean value and variance of fuzzy numbers., Fuzzy Sets Syst. 122 (2001), 315-326. Zbl1016.94047MR1854821
- Carlsson, C., Fullér, R., Possibility for Decision., Springer 2011. Zbl1227.91002MR2828468
- Courbage, C., Rey, B., 10.1007/s00199-006-0178-3, Econom. Theory 32 (2007), 417-424. Zbl1159.91418MR2308938DOI10.1007/s00199-006-0178-3
- Courbage, C., Rey, B., On the shape of non-monetary measures in the face of risk., In: The 36th Seminar of the European Group of Risk and Insurance Economists (EGRIE), Bergen 2009.
- Crainich, D., Eeckhoudt, L., 10.1007/s11166-008-9037-x, J. Risk Uncertainty 36 (2008), 267-276. Zbl1151.91428DOI10.1007/s11166-008-9037-x
- Dubois, D., Prade, H., Fuzzy Sets and Systems: Theory and Applications., Academic Press, New York 1980. Zbl0444.94049MR0589341
- Dubois, D., Prade, H., Possibility Theory., Plenum Press, New York 1988. Zbl1272.03015MR1104217
- Duncan, G. T., 10.2307/1912680, Econometrica 45 (1977), 895-903. Zbl0367.90017MR0496493DOI10.2307/1912680
- Eeckhoudt, L., Schlesinger, H., 10.1257/000282806776157777, Amer. Econom. Rev. 96 (2006), 280-289. DOI10.1257/000282806776157777
- Eeckhoudt, L., Gollier., C., Schlesinger, H., Economic and Financial Decisions under Risk., Princeton University Press, 2005.
- Friedman, M., Savage, L., 10.1086/256692, J. Polit. Econom. 56 (1948), 279-304. DOI10.1086/256692
- Fullér, R., Majlender, P., On weighted possibilistic mean and variance of fuzzy numbers., Fuzzy Sets Syst. 136 (2003), 363-374. Zbl1022.94032MR1984582
- Georgescu, I., Possibilistic risk aversion., Fuzzy Sets Syst. 60 (2009), 2608-2619. Zbl1269.91031MR2589107
- Georgescu, I., 10.1007/s00500-010-0634-7, Soft Comput. 15 (2011), 795-801. Zbl1243.91026DOI10.1007/s00500-010-0634-7
- Georgescu, I., Kinnunen, J., Multidimensional risk aversion with mixed parameters., In: The 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI 2011), Timisoara 2011, pp. 63-68.
- Gollier, C., The Economics of Risk and Time., MIT Press, 2004. Zbl0991.91001
- Hellwig, M., Risk aversion in the small and in the large when outcomes are multidimensional., Preprints of the Max Planck Institute for Research on Collective Goods, Bonn 2006. MR1859482
- Jouini, E., Napp, C., Nocetti, D., 10.1016/j.jet.2012.10.007, J. Econom. Theory. 148 (2013), 1255-1267. Zbl1285.91043MR3055661DOI10.1016/j.jet.2012.10.007
- Karni, E., 10.2307/1914007, Econometrica 47 (1979), 1391-1401. Zbl0431.90013MR0550940DOI10.2307/1914007
- Kimball, M., 10.2307/2938334, Econometrica 58 (1990), 58-73. MR1046919DOI10.2307/2938334
- Leland, H. E., 10.2307/1879518, Quarterly J. Econom. 82 (1968), 465-473. DOI10.2307/1879518
- Menegatti, M., Optimal saving saving in the presence of two risks., J. Econom. 96 (2009), 277-288.
- Menezes, C., Geiss, C., Tressler, J., Increasing downside risk., Amer. Econom. Rev. 70 (1980), 921-932.
- Niculescu, C. P., Perrson, L. E., Convex Functions and their Applications: A Contemporary Approach., Springer, 2005. MR2178902
- Pratt, J., 10.2307/1913738, Econometrica 32 (1964), 122-130. Zbl0267.90010DOI10.2307/1913738
- Sandmo, A., 10.2307/2296725, Rev. Econom. Studies 37 (1970), 353-360. DOI10.2307/2296725
- Zadeh, L. A., Fuzzy sets as a basis for a theory of possibility., Fuzzy Sets Syst. 1 (1978), 3-28. Zbl0377.04002MR0480045
- Zhang, W. G., Wang, Y. L., A comparative study of possibilistic variances and covariances of fuzzy numbers., Fund. Inform. 79 (2007), 257-263. MR2346245
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.