Normability of Lorentz spaces—an alternative approach
Amiran Gogatishvili; Filip Soudský
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 3, page 581-597
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGogatishvili, Amiran, and Soudský, Filip. "Normability of Lorentz spaces—an alternative approach." Czechoslovak Mathematical Journal 64.3 (2014): 581-597. <http://eudml.org/doc/262183>.
@article{Gogatishvili2014,
abstract = {We study normability properties of classical Lorentz spaces. Given a certain general lattice-like structure, we first prove a general sufficient condition for its associate space to be a Banach function space. We use this result to develop an alternative approach to Sawyer’s characterization of normability of a classical Lorentz space of type $\Lambda $. Furthermore, we also use this method in the weak case and characterize normability of $\Lambda _\{v\}^\{\infty \}$. Finally, we characterize the linearity of the space $\Lambda _\{v\}^\{\infty \}$ by a simple condition on the weight $v$.},
author = {Gogatishvili, Amiran, Soudský, Filip},
journal = {Czechoslovak Mathematical Journal},
keywords = {weighted Lorentz space; weighted inequality; non-increasing rearrangement; Banach function space; associate space; weighted Lorentz space; weighted inequality; non-increasing rearrangement; Banach function space; associate space},
language = {eng},
number = {3},
pages = {581-597},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Normability of Lorentz spaces—an alternative approach},
url = {http://eudml.org/doc/262183},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Gogatishvili, Amiran
AU - Soudský, Filip
TI - Normability of Lorentz spaces—an alternative approach
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 3
SP - 581
EP - 597
AB - We study normability properties of classical Lorentz spaces. Given a certain general lattice-like structure, we first prove a general sufficient condition for its associate space to be a Banach function space. We use this result to develop an alternative approach to Sawyer’s characterization of normability of a classical Lorentz space of type $\Lambda $. Furthermore, we also use this method in the weak case and characterize normability of $\Lambda _{v}^{\infty }$. Finally, we characterize the linearity of the space $\Lambda _{v}^{\infty }$ by a simple condition on the weight $v$.
LA - eng
KW - weighted Lorentz space; weighted inequality; non-increasing rearrangement; Banach function space; associate space; weighted Lorentz space; weighted inequality; non-increasing rearrangement; Banach function space; associate space
UR - http://eudml.org/doc/262183
ER -
References
top- Bennett, C., Sharpley, R., Interpolation of Operators, Pure and Applied Mathematics 129 Academic Press, Boston (1988). (1988) Zbl0647.46057MR0928802
- Carro, M., Pick, L., Soria, J., Stepanov, V. D., On embeddings between classical Lorentz spaces, Math. Inequal. Appl. 4 (2001), 397-428. (2001) Zbl0996.46013MR1841071
- Cwikel, M., Kamińska, A., Maligranda, L., Pick, L., 10.1090/S0002-9939-04-07477-5, Proc. Am. Math. Soc. 132 (2004), 3615-3625. (2004) Zbl1061.46026MR2084084DOI10.1090/S0002-9939-04-07477-5
- Gogatishvili, A., Pick, L., 10.4153/CMB-2006-008-3, Can. Math. Bull. 49 (2006), 82-95. (2006) Zbl1106.26018MR2198721DOI10.4153/CMB-2006-008-3
- Gogatishvili, A., Pick, L., 10.5565/PUBLMAT_47203_02, Publ. Mat., Barc. 47 (2003), 311-358. (2003) Zbl1066.46023MR2006487DOI10.5565/PUBLMAT_47203_02
- Lorentz, G. G., 10.2140/pjm.1951.1.411, Pac. J. Math. 1 (1951), 411-429. (1951) Zbl0043.11302MR0044740DOI10.2140/pjm.1951.1.411
- Sawyer, E., 10.4064/sm-96-2-145-158, Stud. Math. 96 (1990), 145-158. (1990) Zbl0705.42014MR1052631DOI10.4064/sm-96-2-145-158
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.