An Alternative Form of the Functional Equation for Riemann’s Zeta Function, II

Andrea Ossicini

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2014)

  • Volume: 53, Issue: 2, page 115-138
  • ISSN: 0231-9721

Abstract

top
This paper treats about one of the most remarkable achievements by Riemann, that is the symmetric form of the functional equation for ζ ( s ) . We present here, after showing the first proof of Riemann, a new, simple and direct proof of the symmetric form of the functional equation for both the Eulerian Zeta function and the alternating Zeta function, connected with odd numbers. A proof that Euler himself could have arranged with a little step at the end of his paper “Remarques sur un beau rapport entre les séries des puissances tant direct que réciproches”. This more general functional equation gives origin to a special function,here named ( s ) which we prove that it can be continued analytically to an entire function over the whole complex plane using techniques similar to those of the second proof of Riemann. Moreover we are able to obtain a connection between Jacobi’s imaginary transformation and an infinite series identity of Ramanujan. Finally, after studying the analytical properties of the function ( s ) , we complete and extend the proof of a Fundamental Theorem, both on the zeros of Riemann Zeta function and on the zeros of Dirichlet Beta function, using also the Euler–Boole summation formula.

How to cite

top

Ossicini, Andrea. "An Alternative Form of the Functional Equation for Riemann’s Zeta Function, II." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 53.2 (2014): 115-138. <http://eudml.org/doc/262189>.

@article{Ossicini2014,
abstract = {This paper treats about one of the most remarkable achievements by Riemann, that is the symmetric form of the functional equation for $\zeta (s)$. We present here, after showing the first proof of Riemann, a new, simple and direct proof of the symmetric form of the functional equation for both the Eulerian Zeta function and the alternating Zeta function, connected with odd numbers. A proof that Euler himself could have arranged with a little step at the end of his paper “Remarques sur un beau rapport entre les séries des puissances tant direct que réciproches”. This more general functional equation gives origin to a special function,here named $(s)$ which we prove that it can be continued analytically to an entire function over the whole complex plane using techniques similar to those of the second proof of Riemann. Moreover we are able to obtain a connection between Jacobi’s imaginary transformation and an infinite series identity of Ramanujan. Finally, after studying the analytical properties of the function $(s)$, we complete and extend the proof of a Fundamental Theorem, both on the zeros of Riemann Zeta function and on the zeros of Dirichlet Beta function, using also the Euler–Boole summation formula.},
author = {Ossicini, Andrea},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Riemann Zeta; Dirichlet Beta; generalized Riemann hypothesis; series representations; Riemann zeta; Dirichlet beta; generalized Riemann hypothesis; series representations},
language = {eng},
number = {2},
pages = {115-138},
publisher = {Palacký University Olomouc},
title = {An Alternative Form of the Functional Equation for Riemann’s Zeta Function, II},
url = {http://eudml.org/doc/262189},
volume = {53},
year = {2014},
}

TY - JOUR
AU - Ossicini, Andrea
TI - An Alternative Form of the Functional Equation for Riemann’s Zeta Function, II
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2014
PB - Palacký University Olomouc
VL - 53
IS - 2
SP - 115
EP - 138
AB - This paper treats about one of the most remarkable achievements by Riemann, that is the symmetric form of the functional equation for $\zeta (s)$. We present here, after showing the first proof of Riemann, a new, simple and direct proof of the symmetric form of the functional equation for both the Eulerian Zeta function and the alternating Zeta function, connected with odd numbers. A proof that Euler himself could have arranged with a little step at the end of his paper “Remarques sur un beau rapport entre les séries des puissances tant direct que réciproches”. This more general functional equation gives origin to a special function,here named $(s)$ which we prove that it can be continued analytically to an entire function over the whole complex plane using techniques similar to those of the second proof of Riemann. Moreover we are able to obtain a connection between Jacobi’s imaginary transformation and an infinite series identity of Ramanujan. Finally, after studying the analytical properties of the function $(s)$, we complete and extend the proof of a Fundamental Theorem, both on the zeros of Riemann Zeta function and on the zeros of Dirichlet Beta function, using also the Euler–Boole summation formula.
LA - eng
KW - Riemann Zeta; Dirichlet Beta; generalized Riemann hypothesis; series representations; Riemann zeta; Dirichlet beta; generalized Riemann hypothesis; series representations
UR - http://eudml.org/doc/262189
ER -

References

top
  1. Backlund, R., Sur les zéros de la fonction ζ ( s ) de Riemann, C. R. Acad. Sci. Paris 158 (1914), 1979–1982. (1914) 
  2. Bellman, R. A., A Brief Introduction to Theta Functions, Holt, Rinehart and Winston, New York, 1961. (1961) Zbl0098.28301MR0125252
  3. Berndt, B. C., Ramanujan’s Notebooks. Part II, Springer-Verlag, New York, 1989. (1989) Zbl0716.11001MR0970033
  4. Borwein, J. M., Calkin, N. J., Manna, D., 10.4169/193009709X470290, American Mathematical Monthly 116, 5 (2009), 387–412. (2009) Zbl1229.11035MR2510837DOI10.4169/193009709X470290
  5. Ditkine, V., Proudnikov, A., Transformations Integrales et Calcul Opèrationnel, Mir, Moscow, 1978. (1978) MR0622210
  6. Edwards, H. M., Riemann’s Zeta function, Pure and Applied Mathematics 58, Academic Press, New York–London, 1974. (1974) Zbl0315.10035MR0466039
  7. Erdelyi, I. et al., Higher Trascendental Functions, Bateman Manuscript Project 1, McGraw-Hill, New York, 1953. (1953) 
  8. Euler, L., Remarques sur un beau rapport entre les séries des puissances tant directes que réciproques, Hist. Acad. Roy. Sci. Belles-Lettres Berlin 17 (1768), 83–106, (Also in: Opera Omnia, Ser. 1, vol. 15, 70–90). (1768) 
  9. Finch, S. R., Mathematical Constants, Cambridge Univ. Press, Cambridge, 2003. (2003) Zbl1054.00001MR2003519
  10. Ingham, A. E., The Distribution of Prime Numbers, Cambridge Univ. Press, Cambridge, 1990. (1990) Zbl0715.11045MR1074573
  11. Jacobi, C. G. I., Fundamenta Nova Theoriae Functionum Ellipticarum, Sec. 40, Königsberg, 1829. (1829) 
  12. Lapidus, M. L., van Frankenhuijsen, M., Fractal Geometry, Complex Dimension and Zeta Functions, Springer-Verlag, New York, 2006. (2006) MR2245559
  13. Legendre, A. M., Mémoires de la classe des sciences mathématiques et phisiques de l’Institut de France, Paris, (1809), 477–490. (1809) 
  14. Ossicini, A., An alternative form of the functional equation for Riemann’s Zeta function, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 56 (2008/9), 95–111. (2008) MR2604733
  15. Riemann, B., Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, Gesammelte Werke, Teubner, Leipzig, 1892, reprinted Dover, New York, 1953, first published Monatsberichte der Berliner Akademie, November 1859. (1892) 
  16. Stirling, J., Methodus differentialis: sive tractatus de summatione et interpolatione serierum infinitarum, Gul. Bowyer, London, 1730. (1730) 
  17. Srivastava, H. M., Choi, J., Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht–Boston–London, 2001. (2001) Zbl1014.33001MR1849375
  18. Titchmarsh, E. C., Heath-Brown, D. R., The Theory of the Riemann Zeta-Function, 2nd ed., Oxford Univ. Press, Oxford, 1986. (1986) MR0882550
  19. Varadarajan, V. S., Euler Through Time: A New Look at Old Themes, American Mathematical Society, 2006. (2006) Zbl1096.01013MR2219954
  20. Varadarajan, V. S., 10.1090/S0273-0979-07-01175-5, Bulletin of the American Mathematical Society 44, 4 (2007), 515–539. (2007) MR2338363DOI10.1090/S0273-0979-07-01175-5
  21. Weil, A., Number Theory: an Approach Through History from Hammurapi to Legendre, Birkhäuser, Boston, 2007. (2007) Zbl1149.01013MR2303999
  22. Whittaker, E. T., Watson, G. N., A Course of Modern Analysis, 4th ed., Cambridge Univ. Press, Cambridge, 1988. (1988) MR1424469

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.