An Alternative Form of the Functional Equation for Riemann’s Zeta Function, II
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2014)
- Volume: 53, Issue: 2, page 115-138
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topReferences
top- Backlund, R., Sur les zéros de la fonction de Riemann, C. R. Acad. Sci. Paris 158 (1914), 1979–1982. (1914)
- Bellman, R. A., A Brief Introduction to Theta Functions, Holt, Rinehart and Winston, New York, 1961. (1961) Zbl0098.28301MR0125252
- Berndt, B. C., Ramanujan’s Notebooks. Part II, Springer-Verlag, New York, 1989. (1989) Zbl0716.11001MR0970033
- Borwein, J. M., Calkin, N. J., Manna, D., 10.4169/193009709X470290, American Mathematical Monthly 116, 5 (2009), 387–412. (2009) Zbl1229.11035MR2510837DOI10.4169/193009709X470290
- Ditkine, V., Proudnikov, A., Transformations Integrales et Calcul Opèrationnel, Mir, Moscow, 1978. (1978) MR0622210
- Edwards, H. M., Riemann’s Zeta function, Pure and Applied Mathematics 58, Academic Press, New York–London, 1974. (1974) Zbl0315.10035MR0466039
- Erdelyi, I. et al., Higher Trascendental Functions, Bateman Manuscript Project 1, McGraw-Hill, New York, 1953. (1953)
- Euler, L., Remarques sur un beau rapport entre les séries des puissances tant directes que réciproques, Hist. Acad. Roy. Sci. Belles-Lettres Berlin 17 (1768), 83–106, (Also in: Opera Omnia, Ser. 1, vol. 15, 70–90). (1768)
- Finch, S. R., Mathematical Constants, Cambridge Univ. Press, Cambridge, 2003. (2003) Zbl1054.00001MR2003519
- Ingham, A. E., The Distribution of Prime Numbers, Cambridge Univ. Press, Cambridge, 1990. (1990) Zbl0715.11045MR1074573
- Jacobi, C. G. I., Fundamenta Nova Theoriae Functionum Ellipticarum, Sec. 40, Königsberg, 1829. (1829)
- Lapidus, M. L., van Frankenhuijsen, M., Fractal Geometry, Complex Dimension and Zeta Functions, Springer-Verlag, New York, 2006. (2006) MR2245559
- Legendre, A. M., Mémoires de la classe des sciences mathématiques et phisiques de l’Institut de France, Paris, (1809), 477–490. (1809)
- Ossicini, A., An alternative form of the functional equation for Riemann’s Zeta function, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 56 (2008/9), 95–111. (2008) MR2604733
- Riemann, B., Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, Gesammelte Werke, Teubner, Leipzig, 1892, reprinted Dover, New York, 1953, first published Monatsberichte der Berliner Akademie, November 1859. (1892)
- Stirling, J., Methodus differentialis: sive tractatus de summatione et interpolatione serierum infinitarum, Gul. Bowyer, London, 1730. (1730)
- Srivastava, H. M., Choi, J., Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht–Boston–London, 2001. (2001) Zbl1014.33001MR1849375
- Titchmarsh, E. C., Heath-Brown, D. R., The Theory of the Riemann Zeta-Function, 2nd ed., Oxford Univ. Press, Oxford, 1986. (1986) MR0882550
- Varadarajan, V. S., Euler Through Time: A New Look at Old Themes, American Mathematical Society, 2006. (2006) Zbl1096.01013MR2219954
- Varadarajan, V. S., 10.1090/S0273-0979-07-01175-5, Bulletin of the American Mathematical Society 44, 4 (2007), 515–539. (2007) MR2338363DOI10.1090/S0273-0979-07-01175-5
- Weil, A., Number Theory: an Approach Through History from Hammurapi to Legendre, Birkhäuser, Boston, 2007. (2007) Zbl1149.01013MR2303999
- Whittaker, E. T., Watson, G. N., A Course of Modern Analysis, 4th ed., Cambridge Univ. Press, Cambridge, 1988. (1988) MR1424469