On a functional equation connected to the distributivity of fuzzy implications over triangular norms and conorms
Michał Baczyński; Tomasz Szostok; Wanda Niemyska
Kybernetika (2014)
- Volume: 50, Issue: 5, page 679-695
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topBaczyński, Michał, Szostok, Tomasz, and Niemyska, Wanda. "On a functional equation connected to the distributivity of fuzzy implications over triangular norms and conorms." Kybernetika 50.5 (2014): 679-695. <http://eudml.org/doc/262200>.
@article{Baczyński2014,
abstract = {Distributivity of fuzzy implications over different fuzzy logic connectives have a very important role to play in efficient inferencing in approximate reasoning, especially in fuzzy control systems (see [9, 15] and [4]). Recently in some considerations connected with these distributivity laws, the following functional equation appeared (see [5]) \[ f(\min (x+y,a))=\min (f(x)+f(y),b), \]
where $a,b>0$ and $f\colon [0,a]\rightarrow [0,b]$ is an unknown function. In this paper we consider in detail a generalized version of this equation, namely the equation \[ f(m\_1(x+y))=m\_2(f(x)+f(y)), \]
where $m_1,m_2$ are functions defined on some intervals of $\{\mathbb \{R\}\}$ satisfying additional assumptions. We analyze the cases when $m_2$ is injective and when $m_2$ is not injective.},
author = {Baczyński, Michał, Szostok, Tomasz, Niemyska, Wanda},
journal = {Kybernetika},
keywords = {fuzzy connectives; fuzzy implication; distributivity; functional equations; fuzzy connectives; fuzzy implication; distributivity; functional equations},
language = {eng},
number = {5},
pages = {679-695},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On a functional equation connected to the distributivity of fuzzy implications over triangular norms and conorms},
url = {http://eudml.org/doc/262200},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Baczyński, Michał
AU - Szostok, Tomasz
AU - Niemyska, Wanda
TI - On a functional equation connected to the distributivity of fuzzy implications over triangular norms and conorms
JO - Kybernetika
PY - 2014
PB - Institute of Information Theory and Automation AS CR
VL - 50
IS - 5
SP - 679
EP - 695
AB - Distributivity of fuzzy implications over different fuzzy logic connectives have a very important role to play in efficient inferencing in approximate reasoning, especially in fuzzy control systems (see [9, 15] and [4]). Recently in some considerations connected with these distributivity laws, the following functional equation appeared (see [5]) \[ f(\min (x+y,a))=\min (f(x)+f(y),b), \]
where $a,b>0$ and $f\colon [0,a]\rightarrow [0,b]$ is an unknown function. In this paper we consider in detail a generalized version of this equation, namely the equation \[ f(m_1(x+y))=m_2(f(x)+f(y)), \]
where $m_1,m_2$ are functions defined on some intervals of ${\mathbb {R}}$ satisfying additional assumptions. We analyze the cases when $m_2$ is injective and when $m_2$ is not injective.
LA - eng
KW - fuzzy connectives; fuzzy implication; distributivity; functional equations; fuzzy connectives; fuzzy implication; distributivity; functional equations
UR - http://eudml.org/doc/262200
ER -
References
top- Baczyński, M., 10.1142/S0218488501000764, Int. J. Uncertain. Fuzziness Knowledge-Based Systems 9 (2001), 229-238. Zbl1113.03315MR1821991DOI10.1142/S0218488501000764
- Baczyński, M., On the distributivity of fuzzy implications over continuous and Archimedean triangular conorms., Fuzzy Sets and Systems 161 (2010), 1406-1419. Zbl1204.03029MR2606422
- Baczyński, M., On the distributivity of fuzzy implications over representable uninorms., Fuzzy Sets and Systems 161 (2010), 2256-2275. Zbl1252.03046MR2658032
- Baczyński, M., Jayaram, B., Fuzzy Implications., Studies in Fuzziness and Soft Computing 231, Springer, Berlin Heidelberg 2008. Zbl1293.03012
- Baczyński, M., Jayaram, B., 10.1109/TFUZZ.2008.924201, IEEE Trans. Fuzzy Syst. 17 (2009), 590-603. DOI10.1109/TFUZZ.2008.924201
- Baczyński, M., Qin, F., 10.1016/j.ijar.2012.10.001, Int. J. Approx. Reason. 54 (2013), 290-296. Zbl1280.03029MR3021572DOI10.1016/j.ijar.2012.10.001
- Baczyński, M., Szostok, T., Niemyska, W., On a functional equation related to distributivity of fuzzy implications., In: 2013 IEEE International Conference on Fuzzy Systems (FUZZ IEEE 2013) Hyderabad 2013, pp. 1-5.
- Balasubramaniam, J., Rao, C. J. M., 10.1109/TFUZZ.2004.825075, IEEE Trans. Fuzzy Syst. 12 (2004), 194-198. DOI10.1109/TFUZZ.2004.825075
- Combs, W. E., Andrews, J. E., 10.1109/91.660804, IEEE Trans. Fuzzy Syst. 6 (1998), 1-11. DOI10.1109/91.660804
- Combs, W. E., 10.1109/TFUZZ.1999.771094, IEEE Trans. Fuzzy Syst. 7 (1999), 371-373. DOI10.1109/TFUZZ.1999.771094
- Combs, W. E., 10.1109/TFUZZ.1999.784215, IEEE Trans. Fuzzy Syst. 7 (1999), 477-478. DOI10.1109/TFUZZ.1999.784215
- Baets, B. De, Fuzzy morphology: A logical approach., In: Uncertainty Analysis in Engineering and Science: Fuzzy Logic, Statistics, and Neural Network Approach (B. M. Ayyub and M. M. Gupta, eds.), Kluwer Academic Publishers, Norwell 1997, pp. 53-68. Zbl1053.03516
- Dick, S., Kandel, A., 10.1109/91.784213, IEEE Trans. Fuzzy Syst. 7 (1999), 475-477. DOI10.1109/91.784213
- González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D., Fuzzy hit-or-miss transform using the fuzzy mathematical morphology based on T-norms., In: Aggregation Functions in Theory and in Practise (H. Bustince et al., eds.), Advances in Intelligent Systems and Computing 228, Springer, Berlin - Heidelberg 2013, pp. 391-403. Zbl1277.68283
- Jayaram, B., 10.1016/j.ijar.2007.07.009, Int. J. Approx. Reason. 48 (2008), 156-173. Zbl1184.68511MR2420665DOI10.1016/j.ijar.2007.07.009
- Klement, E. P., Mesiar, R., Pap, E., Triangular Norms., Kluwer Academic Publishers, Dordrecht 2000. Zbl1087.20041MR1790096
- Kuczma, M., An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality., Państwowe Wydawnictwo Naukowe (Polish Scientific Publishers) and Uniwersytet Śląski, Warszawa-Kraków-Katowice 1985. Zbl1221.39041MR0788497
- Ling, C. H., Representation of associative functions., Publ. Math. Debrecen 12 (1965), 189-212. Zbl0137.26401MR0190575
- Mendel, J. M., Liang, Q., 10.1109/91.771093, IEEE Trans. Fuzzy Syst. 7 (1999), 369-371. DOI10.1109/91.771093
- Qin, F., Baczyński, M., Xie, A., 10.1109/TFUZZ.2011.2171188, IEEE Trans. Fuzzy Syst. 20 (2012), 153-167. DOI10.1109/TFUZZ.2011.2171188
- Qin, F., Yang, L., 10.1016/j.ijar.2010.07.005, Int. J. Approx. Reason. 51 (2010), 984-992. Zbl1226.03036MR2719614DOI10.1016/j.ijar.2010.07.005
- Ruiz-Aguilera, D., Torrens, J., Distributivity of strong implications over conjunctive and disjunctive uninorms., Kybernetika 42 (2006), 319-336. Zbl1249.03030MR2253392
- Ruiz-Aguilera, D., Torrens, J., Distributivity of residual implications over conjunctive and disjunctive uninorms., Fuzzy Sets and Systems 158 (2007), 23-37. Zbl1114.03022MR2287424
- Trillas, E., Alsina, C., On the law in fuzzy logic., IEEE Trans. Fuzzy Syst. 10 (2002), 84-88.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.