Heaps and unpointed stable homotopy theory
Archivum Mathematicum (2014)
- Volume: 050, Issue: 5, page 323-332
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topVokřínek, Lukáš. "Heaps and unpointed stable homotopy theory." Archivum Mathematicum 050.5 (2014): 323-332. <http://eudml.org/doc/262205>.
@article{Vokřínek2014,
abstract = {In this paper, we show how certain “stability phenomena” in unpointed model categories provide the sets of homotopy classes with a canonical structure of an abelian heap, i.e. an abelian group without a choice of a zero. In contrast with the classical situation of stable (pointed) model categories, these sets can be empty.},
author = {Vokřínek, Lukáš},
journal = {Archivum Mathematicum},
keywords = {stable homotopy; equivariant; fibrewise; stable homotopy; equivariant; fibrewise},
language = {eng},
number = {5},
pages = {323-332},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Heaps and unpointed stable homotopy theory},
url = {http://eudml.org/doc/262205},
volume = {050},
year = {2014},
}
TY - JOUR
AU - Vokřínek, Lukáš
TI - Heaps and unpointed stable homotopy theory
JO - Archivum Mathematicum
PY - 2014
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 050
IS - 5
SP - 323
EP - 332
AB - In this paper, we show how certain “stability phenomena” in unpointed model categories provide the sets of homotopy classes with a canonical structure of an abelian heap, i.e. an abelian group without a choice of a zero. In contrast with the classical situation of stable (pointed) model categories, these sets can be empty.
LA - eng
KW - stable homotopy; equivariant; fibrewise; stable homotopy; equivariant; fibrewise
UR - http://eudml.org/doc/262205
ER -
References
top- Bergman, G.M., Hausknecht, A.O., 10.1090/surv/045, Math. Surveys Monogr., vol. 45, American Mathematical Society, Providence, RI, 1996. (1996) Zbl0857.16001MR1387111DOI10.1090/surv/045
- Čadek, M., Krčál, M., Matoušek, J., Vokřínek, L., Wagner, U., 10.1007/s00454-013-9551-8, Discrete Comput. Geom. 51 (2014), 24–66. (2014) DOI10.1007/s00454-013-9551-8
- Čadek, M., Krčál, M., Vokřínek, L., Algorithmic solvability of the lifting-extension problem, Preprint, arXiv:1307.6444, 2013.
- Goerss, P.G., Jardine, J.F., Simplicial homotopy theory, Birkhäuser Verlag, 1999. (1999) Zbl0949.55001MR1711612
- Hirschhorn, P.S., Model categories and their localizations, Math. Surveys Monogr., vol. 99, American Mathematical Society, 2003. (2003) Zbl1017.55001MR1944041
- Mather, M., 10.4153/CJM-1976-029-0, Canad. J. Math. 28 (1976), 225–263. (1976) MR0402694DOI10.4153/CJM-1976-029-0
- nLab entry on “heap”, http://ncatlab.org/nlab/show/heap, tp://ncatlab.org/nlab/show/heap.
- Stephan, M., Elmendorfs theorem for cofibrantly generated model categories, Preprint, arXiv:1308.0856, 2013.
- Vokřínek, L., 10.5817/AM2013-5-359, Arch. Math. (Brno) 49 (5) (2013), 359–368. (2013) MR3159334DOI10.5817/AM2013-5-359
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.