Heaps and unpointed stable homotopy theory

Lukáš Vokřínek

Archivum Mathematicum (2014)

  • Volume: 050, Issue: 5, page 323-332
  • ISSN: 0044-8753

Abstract

top
In this paper, we show how certain “stability phenomena” in unpointed model categories provide the sets of homotopy classes with a canonical structure of an abelian heap, i.e. an abelian group without a choice of a zero. In contrast with the classical situation of stable (pointed) model categories, these sets can be empty.

How to cite

top

Vokřínek, Lukáš. "Heaps and unpointed stable homotopy theory." Archivum Mathematicum 050.5 (2014): 323-332. <http://eudml.org/doc/262205>.

@article{Vokřínek2014,
abstract = {In this paper, we show how certain “stability phenomena” in unpointed model categories provide the sets of homotopy classes with a canonical structure of an abelian heap, i.e. an abelian group without a choice of a zero. In contrast with the classical situation of stable (pointed) model categories, these sets can be empty.},
author = {Vokřínek, Lukáš},
journal = {Archivum Mathematicum},
keywords = {stable homotopy; equivariant; fibrewise; stable homotopy; equivariant; fibrewise},
language = {eng},
number = {5},
pages = {323-332},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Heaps and unpointed stable homotopy theory},
url = {http://eudml.org/doc/262205},
volume = {050},
year = {2014},
}

TY - JOUR
AU - Vokřínek, Lukáš
TI - Heaps and unpointed stable homotopy theory
JO - Archivum Mathematicum
PY - 2014
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 050
IS - 5
SP - 323
EP - 332
AB - In this paper, we show how certain “stability phenomena” in unpointed model categories provide the sets of homotopy classes with a canonical structure of an abelian heap, i.e. an abelian group without a choice of a zero. In contrast with the classical situation of stable (pointed) model categories, these sets can be empty.
LA - eng
KW - stable homotopy; equivariant; fibrewise; stable homotopy; equivariant; fibrewise
UR - http://eudml.org/doc/262205
ER -

References

top
  1. Bergman, G.M., Hausknecht, A.O., 10.1090/surv/045, Math. Surveys Monogr., vol. 45, American Mathematical Society, Providence, RI, 1996. (1996) Zbl0857.16001MR1387111DOI10.1090/surv/045
  2. Čadek, M., Krčál, M., Matoušek, J., Vokřínek, L., Wagner, U., 10.1007/s00454-013-9551-8, Discrete Comput. Geom. 51 (2014), 24–66. (2014) DOI10.1007/s00454-013-9551-8
  3. Čadek, M., Krčál, M., Vokřínek, L., Algorithmic solvability of the lifting-extension problem, Preprint, arXiv:1307.6444, 2013. 
  4. Goerss, P.G., Jardine, J.F., Simplicial homotopy theory, Birkhäuser Verlag, 1999. (1999) Zbl0949.55001MR1711612
  5. Hirschhorn, P.S., Model categories and their localizations, Math. Surveys Monogr., vol. 99, American Mathematical Society, 2003. (2003) Zbl1017.55001MR1944041
  6. Mather, M., 10.4153/CJM-1976-029-0, Canad. J. Math. 28 (1976), 225–263. (1976) MR0402694DOI10.4153/CJM-1976-029-0
  7. nLab entry on “heap”, http://ncatlab.org/nlab/show/heap, tp://ncatlab.org/nlab/show/heap. 
  8. Stephan, M., Elmendorfs theorem for cofibrantly generated model categories, Preprint, arXiv:1308.0856, 2013. 
  9. Vokřínek, L., 10.5817/AM2013-5-359, Arch. Math. (Brno) 49 (5) (2013), 359–368. (2013) MR3159334DOI10.5817/AM2013-5-359

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.