New cases of equality between p-module and p-capacity
Annales Polonici Mathematici (1991)
- Volume: 55, Issue: 1, page 37-56
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] P. P. Caraman, p-Capacity and p-modulus, Symposia Math. 18 (1976), 455-484.
- [2] P. P. Caraman, About equality between the p-module and the p-capacity in , in: Analytic Functions, Proc. Conf. Błażejewko 1982, Lecture Notes in Math. 1039, Springer, Berlin 1983, 32-83.
- [3] P. P. Caraman, p-module and p-capacity of a topological cylinder, Rev. Roumaine Math. Pures Appl. (1991) (in print).
- [4] P. P. Caraman, p-module and p-capacity in , Rev. Roumaine Math. Pures Appl. (in print).
- [5] B. Fuglede, Extremal length and functional completion, Acta Math. 98 (1957), 171-219. Zbl0079.27703
- [6] J. Hesse, Modulus and capacity, Ph.D. Thesis, Univ. of Michigan, Ann Arbor, Michigan, 1972.
- [7] J. Hesse, A p-extremal length and p-capacity equality, Ark. Mat. 13 (1975), 131-144. Zbl0302.31009
- [8] J. Väisälä, On quasiconformal mappings in space, Ann. Acad. Sci. Fenn. Ser. AI Math. 298 (1961), 1-36. Zbl0096.27506
- [9] W. Ziemer, Extremal length and conformal capacity, Trans. Amer. Math. Soc. 126 (1967), 460-473. Zbl0177.34002
- [10] W. Ziemer, Extremal length and p-capacity, Michigan Math. J. 16 (1969), 43-51.