On some generalized invariant means and their application to the stability of the Hyers-Ulam type
Annales Polonici Mathematici (1993)
- Volume: 58, Issue: 2, page 147-159
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topRoman Badora. "On some generalized invariant means and their application to the stability of the Hyers-Ulam type." Annales Polonici Mathematici 58.2 (1993): 147-159. <http://eudml.org/doc/262251>.
@article{RomanBadora1993,
abstract = {We present some extension of the concept of an invariant mean to a space of vector-valued mappings defined on a semigroup. Next, we apply it to the study of the stability of some functional equation.},
author = {Roman Badora},
journal = {Annales Polonici Mathematici},
keywords = {Hyers-Ulam stability theorem; invariant mean; binary intersection property; invariant means; amenable semigroup; Banach space; stability; functional equation},
language = {eng},
number = {2},
pages = {147-159},
title = {On some generalized invariant means and their application to the stability of the Hyers-Ulam type},
url = {http://eudml.org/doc/262251},
volume = {58},
year = {1993},
}
TY - JOUR
AU - Roman Badora
TI - On some generalized invariant means and their application to the stability of the Hyers-Ulam type
JO - Annales Polonici Mathematici
PY - 1993
VL - 58
IS - 2
SP - 147
EP - 159
AB - We present some extension of the concept of an invariant mean to a space of vector-valued mappings defined on a semigroup. Next, we apply it to the study of the stability of some functional equation.
LA - eng
KW - Hyers-Ulam stability theorem; invariant mean; binary intersection property; invariant means; amenable semigroup; Banach space; stability; functional equation
UR - http://eudml.org/doc/262251
ER -
References
top- [1] M. A. Albert and J. A. Baker, Functions with bounded n-th differences, Ann. Polon. Math. 43 (1983), 93-103. Zbl0436.39005
- [2] K. Baron, Functions with differences in subspaces, in: Proceedings of the 18th International Symposium on Functional Equations, University of Waterloo, Faculty of Mathematics, Waterloo, Ontario, Canada, 1980.
- [3] M. M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509-544. Zbl0078.29402
- [4] M. M. Day, Fixed point theorem for compact convex sets, ibid. 5 (1961), 585-590. Zbl0097.31705
- [5] M. M. Day, Normed Linear Spaces, Springer, Berlin 1973.
- [6] J. Dixmier, Les moyennes invariantes dans les semigroupes et leurs applications, Acta Sci. Math. (Szeged) 12 (1950), 213-227. Zbl0037.15501
- [7] G. L. Forti and J. Schwaiger, Stability of homomorphisms and completeness, C. R. Math. Rep. Acad. Sci. Canada 11 (6) (1989), 215-220. Zbl0697.39013
- [8] Z. Gajda, A solution to a problem of J. Schwaiger, Aequationes Math. 32 (1987), 38-44.
- [9] Z. Gajda, Invariant means and representations of semigroups in the theory of functional equations, Prace Naukowe Uniwersytetu Śląskiego 1273, Katowice 1992. Zbl0925.39005
- [10] Z. Gajda, W. Smajdor and A. Smajdor, A theorem of the Hahn-Banach type and its applications, Ann. Polon. Math. 57 (1992), 243-252. Zbl0774.46003
- [11] F. P. Greenleaf, Invariant Means on Topological Groups and Their Applications, Van Nostrand Math. Stud. 16, New York 1969. Zbl0174.19001
- [12] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. I, Springer, Berlin 1963. Zbl0115.10603
- [13] D. H. Hyers, On the stability of the linear functional equations, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. Zbl0061.26403
- [14] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Polish Scientific Publishers (PWN) and Silesian University Press, Warszawa-Kraków-Katowice 1985.
- [15] Z. Moszner, Sur la stabilité de l'équation d'homomorphisme, Aequationes Math. 29 (1985), 290-306. Zbl0583.39012
- [16] L. Nachbin, A theorem of the Hahn-Banach type for linear transformations, Trans. Amer. Math. Soc. 68 (1950), 28-46. Zbl0035.35402
- [17] J. von Neumann, Zur allgemeinen Theorie der Masses, Fund. Math. 13 (1929), 73-116.
- [18] K. Nikodem, On Jensen's functional equation for set-valued functions, Rad. Mat. 3 (1987), 23-33. Zbl0628.39013
- [19] J. Rätz, On approximately additive mappings, in: General Inequalities 2, Internat. Ser. Numer. Math. 47, Birkhäuser, Basel 1980, 233-251. Zbl0433.39014
- [20] L. Székelyhidi, Remark 17, Report of Meeting, Aequationes Math. 29 (1985), 95-96.
- [21] L. Székelyhidi, Note on Hyers's theorem, C. R. Math. Rep. Acad. Sci. Canada 8 (1986), 127-129. Zbl0604.39007
- [22] S. M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, New York 1960. Zbl0137.24201
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.