On some generalized invariant means and their application to the stability of the Hyers-Ulam type

Roman Badora

Annales Polonici Mathematici (1993)

  • Volume: 58, Issue: 2, page 147-159
  • ISSN: 0066-2216

Abstract

top
We present some extension of the concept of an invariant mean to a space of vector-valued mappings defined on a semigroup. Next, we apply it to the study of the stability of some functional equation.

How to cite

top

Roman Badora. "On some generalized invariant means and their application to the stability of the Hyers-Ulam type." Annales Polonici Mathematici 58.2 (1993): 147-159. <http://eudml.org/doc/262251>.

@article{RomanBadora1993,
abstract = {We present some extension of the concept of an invariant mean to a space of vector-valued mappings defined on a semigroup. Next, we apply it to the study of the stability of some functional equation.},
author = {Roman Badora},
journal = {Annales Polonici Mathematici},
keywords = {Hyers-Ulam stability theorem; invariant mean; binary intersection property; invariant means; amenable semigroup; Banach space; stability; functional equation},
language = {eng},
number = {2},
pages = {147-159},
title = {On some generalized invariant means and their application to the stability of the Hyers-Ulam type},
url = {http://eudml.org/doc/262251},
volume = {58},
year = {1993},
}

TY - JOUR
AU - Roman Badora
TI - On some generalized invariant means and their application to the stability of the Hyers-Ulam type
JO - Annales Polonici Mathematici
PY - 1993
VL - 58
IS - 2
SP - 147
EP - 159
AB - We present some extension of the concept of an invariant mean to a space of vector-valued mappings defined on a semigroup. Next, we apply it to the study of the stability of some functional equation.
LA - eng
KW - Hyers-Ulam stability theorem; invariant mean; binary intersection property; invariant means; amenable semigroup; Banach space; stability; functional equation
UR - http://eudml.org/doc/262251
ER -

References

top
  1. [1] M. A. Albert and J. A. Baker, Functions with bounded n-th differences, Ann. Polon. Math. 43 (1983), 93-103. Zbl0436.39005
  2. [2] K. Baron, Functions with differences in subspaces, in: Proceedings of the 18th International Symposium on Functional Equations, University of Waterloo, Faculty of Mathematics, Waterloo, Ontario, Canada, 1980. 
  3. [3] M. M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509-544. Zbl0078.29402
  4. [4] M. M. Day, Fixed point theorem for compact convex sets, ibid. 5 (1961), 585-590. Zbl0097.31705
  5. [5] M. M. Day, Normed Linear Spaces, Springer, Berlin 1973. 
  6. [6] J. Dixmier, Les moyennes invariantes dans les semigroupes et leurs applications, Acta Sci. Math. (Szeged) 12 (1950), 213-227. Zbl0037.15501
  7. [7] G. L. Forti and J. Schwaiger, Stability of homomorphisms and completeness, C. R. Math. Rep. Acad. Sci. Canada 11 (6) (1989), 215-220. Zbl0697.39013
  8. [8] Z. Gajda, A solution to a problem of J. Schwaiger, Aequationes Math. 32 (1987), 38-44. 
  9. [9] Z. Gajda, Invariant means and representations of semigroups in the theory of functional equations, Prace Naukowe Uniwersytetu Śląskiego 1273, Katowice 1992. Zbl0925.39005
  10. [10] Z. Gajda, W. Smajdor and A. Smajdor, A theorem of the Hahn-Banach type and its applications, Ann. Polon. Math. 57 (1992), 243-252. Zbl0774.46003
  11. [11] F. P. Greenleaf, Invariant Means on Topological Groups and Their Applications, Van Nostrand Math. Stud. 16, New York 1969. Zbl0174.19001
  12. [12] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. I, Springer, Berlin 1963. Zbl0115.10603
  13. [13] D. H. Hyers, On the stability of the linear functional equations, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. Zbl0061.26403
  14. [14] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Polish Scientific Publishers (PWN) and Silesian University Press, Warszawa-Kraków-Katowice 1985. 
  15. [15] Z. Moszner, Sur la stabilité de l'équation d'homomorphisme, Aequationes Math. 29 (1985), 290-306. Zbl0583.39012
  16. [16] L. Nachbin, A theorem of the Hahn-Banach type for linear transformations, Trans. Amer. Math. Soc. 68 (1950), 28-46. Zbl0035.35402
  17. [17] J. von Neumann, Zur allgemeinen Theorie der Masses, Fund. Math. 13 (1929), 73-116. 
  18. [18] K. Nikodem, On Jensen's functional equation for set-valued functions, Rad. Mat. 3 (1987), 23-33. Zbl0628.39013
  19. [19] J. Rätz, On approximately additive mappings, in: General Inequalities 2, Internat. Ser. Numer. Math. 47, Birkhäuser, Basel 1980, 233-251. Zbl0433.39014
  20. [20] L. Székelyhidi, Remark 17, Report of Meeting, Aequationes Math. 29 (1985), 95-96. 
  21. [21] L. Székelyhidi, Note on Hyers's theorem, C. R. Math. Rep. Acad. Sci. Canada 8 (1986), 127-129. Zbl0604.39007
  22. [22] S. M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, New York 1960. Zbl0137.24201

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.