On Lie algebras of vector fields related to Riemannian foliations

Tomasz Rybicki

Annales Polonici Mathematici (1993)

  • Volume: 58, Issue: 2, page 111-122
  • ISSN: 0066-2216

Abstract

top
Riemannian foliations constitute an important type of foliated structures. In this note we prove two theorems connecting the algebraic structure of Lie algebras of foliated vector fields with the smooth structure of a Riemannian foliation.

How to cite

top

Tomasz Rybicki. "On Lie algebras of vector fields related to Riemannian foliations." Annales Polonici Mathematici 58.2 (1993): 111-122. <http://eudml.org/doc/262263>.

@article{TomaszRybicki1993,
abstract = {Riemannian foliations constitute an important type of foliated structures. In this note we prove two theorems connecting the algebraic structure of Lie algebras of foliated vector fields with the smooth structure of a Riemannian foliation.},
author = {Tomasz Rybicki},
journal = {Annales Polonici Mathematici},
keywords = {Riemannian foliation; Lie algebra; ideal; isomorphism; vector field; generalized manifold; stratification; space of leaves; singular foliation; Riemannian foliations of compact, connected manifolds; Lie algebra of vector fields; Lie algebra of foliated vector fields; Lie algebra isomorphism; Satake diffeomorphism},
language = {eng},
number = {2},
pages = {111-122},
title = {On Lie algebras of vector fields related to Riemannian foliations},
url = {http://eudml.org/doc/262263},
volume = {58},
year = {1993},
}

TY - JOUR
AU - Tomasz Rybicki
TI - On Lie algebras of vector fields related to Riemannian foliations
JO - Annales Polonici Mathematici
PY - 1993
VL - 58
IS - 2
SP - 111
EP - 122
AB - Riemannian foliations constitute an important type of foliated structures. In this note we prove two theorems connecting the algebraic structure of Lie algebras of foliated vector fields with the smooth structure of a Riemannian foliation.
LA - eng
KW - Riemannian foliation; Lie algebra; ideal; isomorphism; vector field; generalized manifold; stratification; space of leaves; singular foliation; Riemannian foliations of compact, connected manifolds; Lie algebra of vector fields; Lie algebra of foliated vector fields; Lie algebra isomorphism; Satake diffeomorphism
UR - http://eudml.org/doc/262263
ER -

References

top
  1. [1] K. Abe, Pursell-Shanks type theorem for orbit spaces of G-manifolds, Publ. RIMS Kyoto Univ. 18 (1982), 685-702. Zbl0519.57033
  2. [2] I. Amemiya, Lie algebra of vector fields and complex structure, J. Math. Soc. Japan 27 (1975), 545-549. Zbl0311.57012
  3. [3] M. Davis, Smooth G-manifolds as collections of fiber bundles, Pacific J. Math. 77 (1978), 315-363. Zbl0403.57002
  4. [4] R. P. Filipkiewicz, Isomorphisms between diffeomorphism groups, Ergodic Theory Dynamical Systems 2 (1982), 159-171. Zbl0521.58016
  5. [5] K. Fukui, Pursell-Shanks type theorem for free G-manifolds, Publ. RIMS Kyoto Univ. 17 (1981), 249-265. Zbl0464.57018
  6. [6] K. Fukui and N. Tomita, Lie algebra of foliation preserving vector fields, J. Math. Kyoto Univ. 22 (1983), 685-699. Zbl0511.58030
  7. [7] F. Guedira et A. Lichnerowicz, Géométrie des algèbres de Lie locales de Kirillov, J. Math. Pures Appl. 63 (1984), 407-484. Zbl0562.53029
  8. [8] P. Molino, Géométrie globale des feuilletages riemanniens, Nederl. Akad. Wetensch. Proc. 85 (1982), 45-76. Zbl0516.57016
  9. [9] P. Molino, Riemannian Foliations, Progr. Math. 73, Birkhäuser, 1988. 
  10. [10] M. Pierrot, Orbites des champs feuilletés pour un feuilletage riemannien sur une variété compacte, C. R. Acad. Sci. Paris 301 (1985), 443-445. Zbl0593.58003
  11. [11] L. E. Pursell and M. E. Shanks, The Lie algebra of a smooth manifold, Proc. Amer. Math. Soc. 5 (1954), 468-472. Zbl0055.42105
  12. [12] T. Rybicki, On the Lie algebra of a transversally complete foliation, Publ. Sec. Mat. Univ. Autònoma Barcelona 31 (1987), 5-16. Zbl0637.57018
  13. [13] T. Rybicki, Lie algebras of vector fields and codimension one foliations, Publ. Mat. 34 (1990), 311-321. Zbl0721.57016
  14. [14] G. W. Schwarz, Lifting smooth homotopies of orbit spaces, Publ. IHES 51 (1980), 37-135. Zbl0449.57009
  15. [15] R. A. Wolak, Maximal subalgebras in the algebra of foliated vector fields of a Riemannian foliation, Comment. Math. Helv. 64 (1989), 536-541. Zbl0695.53023

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.