Positive solutions of nonlinear elliptic systems
Annales Polonici Mathematici (1993)
- Volume: 58, Issue: 2, page 201-212
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topRobert Dalmasso. "Positive solutions of nonlinear elliptic systems." Annales Polonici Mathematici 58.2 (1993): 201-212. <http://eudml.org/doc/262321>.
@article{RobertDalmasso1993,
abstract = {We study the existence and nonexistence of positive solutions of nonlinear elliptic systems in an annulus with Dirichlet boundary conditions. In particular, $L^∞$ a priori bounds are obtained. We also study a general multiple linear eigenvalue problem on a bounded domain.},
author = {Robert Dalmasso},
journal = {Annales Polonici Mathematici},
keywords = {a priori bounds; nonlinear elliptic systems; Maximum Principle; semilinear elliptic systems in an annulus; homogeneous Dirichlet conditions; maximum principle; positive solutions; a priori bounds; multiple linear eigenvalue problem},
language = {eng},
number = {2},
pages = {201-212},
title = {Positive solutions of nonlinear elliptic systems},
url = {http://eudml.org/doc/262321},
volume = {58},
year = {1993},
}
TY - JOUR
AU - Robert Dalmasso
TI - Positive solutions of nonlinear elliptic systems
JO - Annales Polonici Mathematici
PY - 1993
VL - 58
IS - 2
SP - 201
EP - 212
AB - We study the existence and nonexistence of positive solutions of nonlinear elliptic systems in an annulus with Dirichlet boundary conditions. In particular, $L^∞$ a priori bounds are obtained. We also study a general multiple linear eigenvalue problem on a bounded domain.
LA - eng
KW - a priori bounds; nonlinear elliptic systems; Maximum Principle; semilinear elliptic systems in an annulus; homogeneous Dirichlet conditions; maximum principle; positive solutions; a priori bounds; multiple linear eigenvalue problem
UR - http://eudml.org/doc/262321
ER -
References
top- [1] T. B. Benjamin, A unified theory of conjugate flows, Philos. Trans. Roy. Soc. 269 A (1971), 587-643. Zbl0226.76037
- [2] Ph. Clément, D. G. de Figueiredo and E. Mitidieri, Positive solutions of semilinear elliptic systems, Comm. Partial Differential Equations 17 (1992), 923-940. Zbl0818.35027
- [3] D. G. de Figueiredo, P.-L. Lions and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures Appl. 61 (1982), 41-63. Zbl0452.35030
- [4] B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243. Zbl0425.35020
- [5] M. A. Krasnosel'skiĭ, Fixed points of cone-compressing and cone-extending operators, Soviet Math. Dokl. 1 (1960), 1285-1288. Zbl0098.30902
- [6] L. A. Peletier and R. C. A. M. van der Vorst, Existence and non-existence of positive solutions of non-linear elliptic systems and the biharmonic equation, Differential Integral Equations 5 (1992), 747-767. Zbl0758.35029
- [7] F. Rellich, Darstellung der Eigenwerte von Δu + λu = 0 durch ein Randintegral, Math. Z. 46 (1940), 635-636.
- [8] W. C. Troy, Symmetry properties in systems of semilinear elliptic equations, J. Differential Equations 42 (1981), 400-413. Zbl0486.35032
- [9] R. C. A. M. van der Vorst, Variational identities and applications to differential systems, Arch. Rational Mech. Anal. 116 (1991), 375-398. Zbl0796.35059
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.