Approximation of relaxed solutions for lower semicontinuous differential inclusions

A. Ornelas

Annales Polonici Mathematici (1991)

  • Volume: 56, Issue: 1, page 1-10
  • ISSN: 0066-2216

Abstract

top
We construct a guided continuous selection for lsc multifunctions with decomposable values in L¹[0,T]. We then apply it to obtain a new result on the uniform approximation of relaxed solutions for lsc differential inclusions.

How to cite

top

A. Ornelas. "Approximation of relaxed solutions for lower semicontinuous differential inclusions." Annales Polonici Mathematici 56.1 (1991): 1-10. <http://eudml.org/doc/262330>.

@article{A1991,
abstract = {We construct a guided continuous selection for lsc multifunctions with decomposable values in L¹[0,T]. We then apply it to obtain a new result on the uniform approximation of relaxed solutions for lsc differential inclusions.},
author = {A. Ornelas},
journal = {Annales Polonici Mathematici},
keywords = {differential inclusions; relaxed solutions; continuous selections},
language = {eng},
number = {1},
pages = {1-10},
title = {Approximation of relaxed solutions for lower semicontinuous differential inclusions},
url = {http://eudml.org/doc/262330},
volume = {56},
year = {1991},
}

TY - JOUR
AU - A. Ornelas
TI - Approximation of relaxed solutions for lower semicontinuous differential inclusions
JO - Annales Polonici Mathematici
PY - 1991
VL - 56
IS - 1
SP - 1
EP - 10
AB - We construct a guided continuous selection for lsc multifunctions with decomposable values in L¹[0,T]. We then apply it to obtain a new result on the uniform approximation of relaxed solutions for lsc differential inclusions.
LA - eng
KW - differential inclusions; relaxed solutions; continuous selections
UR - http://eudml.org/doc/262330
ER -

References

top
  1. [1] H. A. Antosiewicz and A. Cellina, Continuous selections and differential relations, J. Differential Equations 19 (1975), 386-398. 
  2. [2] J. P. Aubin and A. Cellina, Differential Inclusions, Springer, New York 1984. Zbl0538.34007
  3. [3] A. Bressan, On differential relations with lower-continuous right-hand side, J. Differential Equations 37 (1980), 89-97. Zbl0418.34017
  4. [4] A. Bressan, On a bang-bang principle for non-linear systems, Boll. Un. Mat. Ital. Suppl. Anal. Funz. Appl. 1980, 55-59. Zbl0445.49012
  5. [5] A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math. 90 (1988), 69-86. Zbl0677.54013
  6. [6] A. Cellina and M. V. Marchi, Non-convex perturbations of maximal monotone differential inclusions, Israel J. Math. 46 (1983), 1-11. Zbl0542.47036
  7. [7] G. Colombo, A. Fonda and A. Ornelas, Lower semicontinuous perturbations of maximal monotone differential inclusions, ibid. 61 (1988), 211-218. Zbl0661.47038
  8. [8] A. F. Filippov, Classical solutions of differential equations with multivalued right hand side, SIAM J. Control 5 (1967), 609-621. 
  9. [9] A. Fryszkowski, Continuous selections for a class of non-convex multivalued maps, Studia Math. 76 (1983), 163-174. Zbl0534.28003
  10. [10] A. Fryszkowski, Continuous selections of Aumann integrals, J. Math. Anal. Appl., to appear. Zbl0704.28006
  11. [11] F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), 149-182. Zbl0368.60006
  12. [12] C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53-72. Zbl0296.28003
  13. [13] S. Łojasiewicz jr., The existence of solutions for lower semicontinuous orientor fields, Bull. Acad. Polon. Sci. 28 (1980), 483-487. Zbl0483.49028
  14. [14] C. Olech, Decomposability as a substitute for convexity, in: Multifunctions and Integrands, G. Salinetti (ed.), Lecture Notes in Math. 1091, Springer, Berlin 1984, 193-205. Zbl0592.28008
  15. [15] A. Ornelas, Parametrization of Carathéodory multifunctions, preprint SISSA 51 M (1988). 
  16. [16] G. Pianigiani, On the fundamental theory of multivalued differential equations, J. Differential Equations 25 (1977), 30-38. Zbl0398.34017
  17. [17] A. Pliś, Trajectories and quasitrajectories of an orientor field, Bull. Acad. Polon. Sci. 11 (1963), 369-370. Zbl0124.29404
  18. [18] A. A. Tolstonogov and I. A. Finogenko, On solutions of a differential inclusion with lower semicontinuous nonconvex right-hand side in a Banach space, Math. USSR-Sb. 53 (1986), 203-231. Zbl0588.34012
  19. [19] T. Ważewski, Sur une généralisation de la notion des solutions d'une équation au contingent, Bull. Acad. Pol. Sci. 10 (1962), 11-15. Zbl0104.30404

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.