Generalized Schwarzian derivatives for generalized fractional linear transformations

John Ryan

Annales Polonici Mathematici (1992)

  • Volume: 57, Issue: 1, page 29-44
  • ISSN: 0066-2216

Abstract

top
Generalizations of the classical Schwarzian derivative of complex analysis have been proposed by Osgood and Stowe [12, 13], Carne [5], and Ahlfors [3]. We present another generalization of the Schwarzian derivative over vector spaces.

How to cite

top

John Ryan. "Generalized Schwarzian derivatives for generalized fractional linear transformations." Annales Polonici Mathematici 57.1 (1992): 29-44. <http://eudml.org/doc/262343>.

@article{JohnRyan1992,
abstract = {Generalizations of the classical Schwarzian derivative of complex analysis have been proposed by Osgood and Stowe [12, 13], Carne [5], and Ahlfors [3]. We present another generalization of the Schwarzian derivative over vector spaces.},
author = {John Ryan},
journal = {Annales Polonici Mathematici},
keywords = {Clifford functions; Schwarzian derivative; Clifford algebra; local diffeomorphisms},
language = {eng},
number = {1},
pages = {29-44},
title = {Generalized Schwarzian derivatives for generalized fractional linear transformations},
url = {http://eudml.org/doc/262343},
volume = {57},
year = {1992},
}

TY - JOUR
AU - John Ryan
TI - Generalized Schwarzian derivatives for generalized fractional linear transformations
JO - Annales Polonici Mathematici
PY - 1992
VL - 57
IS - 1
SP - 29
EP - 44
AB - Generalizations of the classical Schwarzian derivative of complex analysis have been proposed by Osgood and Stowe [12, 13], Carne [5], and Ahlfors [3]. We present another generalization of the Schwarzian derivative over vector spaces.
LA - eng
KW - Clifford functions; Schwarzian derivative; Clifford algebra; local diffeomorphisms
UR - http://eudml.org/doc/262343
ER -

References

top
  1. [1] L. V. Ahlfors, Clifford numbers and Möbius transformations in n , in: Clifford Algebras and their Applications in Mathematical Phisics, J. S. R. Chrisholm and A. K. Common (eds.), NATO Adv. Study Inst. Ser., Ser. C: Math. Phys. Sci., Vol. 183, Reidel, 1986, 167-175. 
  2. [2] L. V. Ahlfors, Möbius transformations in n expressed through 2 × 2 matrices of Clifford numbers, Complex Variables 5 (1986), 215-224. 
  3. [3] L. V. Ahlfors, Cross-ratios and Schwarzian derivatives in n , preprint. 
  4. [4] M. F. Atiyah, R. Bott and A. Shapiro, Clifford modules, Topology 3 (1964), 3-38. 
  5. [5] K. Carne, The Schwarzian derivative for conformal maps, to appear. Zbl0705.30010
  6. [6] J. Elstrodt, F. Grunewald and J. Mennicke, Vahlen's group of Clifford matrices and Spin-groups, Math. Z. 196 (1987), 369-390. Zbl0611.20027
  7. [7] K. Gross and R. Kunze, Bessel functions and representation theory, II. Holomorphic discrete series and metaplectic representations, J. Funct. Anal. 25 (1977), 1-49. Zbl0361.22007
  8. [8] H. P. Jakobsen, Intertwining differential operators for Mp(n,ℝ) and U(n,n), Trans. Amer. Math. Soc. 246 (1978), 311-337. 
  9. [9] H. P. Jakobsen and M. Vergne, Wave and Dirac operators and representations of the conformal group, J. Funct. Anal. 24 (1977), 52-106. Zbl0361.22012
  10. [10] O. Lehto, Univalent Functions and Teichmüller Spaces, Graduate Texts in Math. 109, Springer, 1986. 
  11. [11] H. Maass, Automorphe Funktionen von mehreren Veränderlichen und Dirichletsche Reihen, Abh. Math. Sem. Univ. Hamburg 16 (1949), 72-100. Zbl0034.34801
  12. [12] P. Osgood and D. Stowe, The Schwarzian derivative and conformal mapping of Riemannian manifolds, to appear. Zbl0766.53034
  13. [13] P. Osgood and D. Stowe, A generalization of Nehari's univalence criterion, to appear. Zbl0722.53029
  14. [14] I. R. Porteous, Topological Geometry, Cambridge Univ. Press, 1981. 
  15. [15] K. Th. Vahlen, Ueber Bewegungen und complexe Zahlen, Math. Ann. 55 (1902), 585-593. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.