# Some subclasses of close-to-convex functions

Annales Polonici Mathematici (1993)

- Volume: 58, Issue: 1, page 53-64
- ISSN: 0066-2216

## Access Full Article

top## Abstract

top## How to cite

topAdam Lecko. "Some subclasses of close-to-convex functions." Annales Polonici Mathematici 58.1 (1993): 53-64. <http://eudml.org/doc/262387>.

@article{AdamLecko1993,

abstract = {For α ∈ [0,1] and β ∈ (-π/2,π/2) we introduce the classes $C_β(α)$ defined as follows: a function f regular in U = z: |z| < 1 of the form $f(z) = z + ∑_\{n=1\}^\{∞\} a_n z^n$, z ∈ U, belongs to the class $C_β(α)$ if $Re\{e^\{iβ\}(1 - α²z²)f^\{\prime \}(z)\} < 0$ for z ∈ U. Estimates of the coefficients, distortion theorems and other properties of functions in $C_β(α)$ are examined.},

author = {Adam Lecko},

journal = {Annales Polonici Mathematici},

keywords = {close-to-convex functions; close-to-convex functions with argument β; functions convex in the direction of the imaginary axis; functions of bounded rotation with argument β; distortion theorems},

language = {eng},

number = {1},

pages = {53-64},

title = {Some subclasses of close-to-convex functions},

url = {http://eudml.org/doc/262387},

volume = {58},

year = {1993},

}

TY - JOUR

AU - Adam Lecko

TI - Some subclasses of close-to-convex functions

JO - Annales Polonici Mathematici

PY - 1993

VL - 58

IS - 1

SP - 53

EP - 64

AB - For α ∈ [0,1] and β ∈ (-π/2,π/2) we introduce the classes $C_β(α)$ defined as follows: a function f regular in U = z: |z| < 1 of the form $f(z) = z + ∑_{n=1}^{∞} a_n z^n$, z ∈ U, belongs to the class $C_β(α)$ if $Re{e^{iβ}(1 - α²z²)f^{\prime }(z)} < 0$ for z ∈ U. Estimates of the coefficients, distortion theorems and other properties of functions in $C_β(α)$ are examined.

LA - eng

KW - close-to-convex functions; close-to-convex functions with argument β; functions convex in the direction of the imaginary axis; functions of bounded rotation with argument β; distortion theorems

UR - http://eudml.org/doc/262387

ER -

## References

top- [1] H. S. Al-Amiri and M. O. Reade, On a linear combination of some expressions in the theory of univalent functions, Monatsh. Math. 80 (4) (1975), 257-264. Zbl0314.30012
- [2] I. M. Gal'perin, The theory of univalent functions with bounded rotation, Izv. Vyssh. Ucheb. Zaved. Mat. 1958 (3) (4), 50-61 (in Russian).
- [3] A. W. Goodman and E. B. Saff, On the definition of a close-to-convex function, Internat. J. Math. and Math. Sci. 1 (1978), 125-132. Zbl0383.30005
- [4] W. Hengartner and G. Schober, On schlicht mappings to domains convex in one direction, Comment. Math. Helv. 45 (1970), 303-314. Zbl0203.07604
- [5] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169-185. Zbl0048.31101
- [6] A. Lecko, On some classes of close-to-convex functions, Fol. Sci. Univ. Tech. Resov. 60 (1989), 61-70. Zbl0721.30008
- [7] T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104 (1962), 532-537. Zbl0106.04805
- [8] P. T. Mocanu, Une propriété de convexité généralisée dans la théorie de la représentation conforme, Mathematica (Cluj) 11 (34) (1969), 127-133. Zbl0195.36401
- [9] K. Noshiro, On the theory of schlicht functions, J. Fac. Sci. Hokkaido Univ. Jap. (1) 2 (1934-1935), 129-155. Zbl0010.26305
- [10] L. Špaček, Contribution à la theorie des fonctions univalentes, Časopis Pěst. Mat. 2 (1932), 12-19. Zbl58.0365.04
- [11] J. Stankiewicz and J. Waniurski, Some classes of functions subordinate to linear transformation and their applications, Ann. Univ. Mariae Curie-Skłodowska Sect. A 28 (1974), 85-94.
- [12] S. Warschawski, On the higher derivatives at the boundary in conformal mapping, Trans. Amer. Math. Soc. 38 (1935), 310-340. Zbl0014.26707

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.