Nevanlinna theory on the p-adic plane
Annales Polonici Mathematici (1992)
- Volume: 57, Issue: 2, page 135-147
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topCapi Corrales Rodrigáñez. "Nevanlinna theory on the p-adic plane." Annales Polonici Mathematici 57.2 (1992): 135-147. <http://eudml.org/doc/262389>.
@article{CapiCorralesRodrigáñez1992,
abstract = {Let 𝕂 be a complete and algebraically closed non-Archimedean valued field. Following ideas of Marc Krasner and Philippe Robba, we define K-meromorphic functions from 𝕂 to 𝕂. We show that the Nevanlinna theory for functions of a single complex variable may be extended to those functions (and consequently to meromorphic functions).},
author = {Capi Corrales Rodrigáñez},
journal = {Annales Polonici Mathematici},
keywords = {K-meromorphic function; non-Archimedean valuation; Nevanlinna theory; -adic function theory; -meromorphic functions; Nevanlinna theory for functions},
language = {eng},
number = {2},
pages = {135-147},
title = {Nevanlinna theory on the p-adic plane},
url = {http://eudml.org/doc/262389},
volume = {57},
year = {1992},
}
TY - JOUR
AU - Capi Corrales Rodrigáñez
TI - Nevanlinna theory on the p-adic plane
JO - Annales Polonici Mathematici
PY - 1992
VL - 57
IS - 2
SP - 135
EP - 147
AB - Let 𝕂 be a complete and algebraically closed non-Archimedean valued field. Following ideas of Marc Krasner and Philippe Robba, we define K-meromorphic functions from 𝕂 to 𝕂. We show that the Nevanlinna theory for functions of a single complex variable may be extended to those functions (and consequently to meromorphic functions).
LA - eng
KW - K-meromorphic function; non-Archimedean valuation; Nevanlinna theory; -adic function theory; -meromorphic functions; Nevanlinna theory for functions
UR - http://eudml.org/doc/262389
ER -
References
top- [1] W. W. Adams and E. G. Straus, Non-Archimedean analytic functions taking the same values at the same points, Illinois J. Math. 15 (1971), 418-424. Zbl0215.13202
- [2] I. N. Baker, The existence of fixpoints of entire functions, Math. Z. 73 (1960), 280-284. Zbl0129.29102
- [3] I. N. Baker and F. Gross, On factorizing entire functions, Proc. London Math. Soc. (3) 18 (1968), 69-76. Zbl0159.10002
- [4] F. Gross, Entire solutions to the functional equation a(b(z)) = a(g(z)) + c, J. Indian Math. Soc. 32 (1968), 199-206. Zbl0186.21403
- [5] F. Gross, On factorization of meromorphic functions, Trans. Amer. Math. Soc. 131 (1968), 215-221. Zbl0159.36702
- [6] F. Gross and C. F. Oswood, On fixed points of composite entire functions, J. London Math. Soc. (2) 28 (1983), 57-61.
- [7] H. Hasse, Number Theory, Springer, 1980.
- [8] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford 1964.
- [9] H. H. Khoai, On p-adic meromorphic functions, Duke Math. J. 50 (1983), 695-711. Zbl0544.30039
- [10] M. Krasner, Rapport sur le prolongement analytique dans les corps valués complets par la méthode des éléments analytiques quasi connexes, Bull. Soc. Math. France Mém. 39-40 (1974), 131-254.
- [11] R. Nevanlinna, Le théorème de Picard-Borel et la théorie des fonctions méro- morphes, Gauthier-Villars, Paris 1929.
- [12] P. Robba, Fonctions analytiques sur les corps valués ultramétriques complets, Astérisque 10 (1973), 109-218. Zbl0289.12110
- [13] S. L. Segal, Nine Introductions in Complex Analysis, North-Holland Math. Stud. 53, 1981, 163-204. Zbl0482.30002
- [14] C.-C. Yang, Factorization Theory of Meromorphic Functions and Related Topics, Marcel Dekker, New York 1982.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.