On functions satisfying more than one equation of Schiffer type
Annales Polonici Mathematici (1993)
- Volume: 58, Issue: 3, page 237-252
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. K. Bahtin, Some properties of functions of class S, Ukrain. Mat. Zh. 33 (1981), 154-159 (in Russian); English transl.: Ukrainian Math. J. 33 (1981), 122-126.
- [2] Y. Kubota, On extremal problems which correspond to algebraic univalent functions, Kodai Math. Sem. Rep. 25 (1973), 412-428. Zbl0278.30015
- [3] Z. J. Jakubowski and W. Majchrzak, On functions realizing the maximum of two functionals at a time, Serdica 10 (1984), 337-343. Zbl0576.30013
- [4] A. Rost and J. Śladkowska, Sur les fonctions de Bieberbach-Eilenberg satisfaisant à plus qu'une équation de type de Schiffer, Demonstratio Math., to appear.
- [5] H. L. Royden, The coefficient problem for bounded schlicht functions, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 637-662. Zbl0041.40802
- [6] A. C. Schaeffer and D. C. Spencer, Coefficient Regions for Schlicht Functions, Amer. Math. Soc., 1950. Zbl0049.06003
- [7] J. Śladkowska, Sur les fonctions univalentes, bornées, satisfaisant deux au moins -équations, Demonstratio Math. 11 (1978), 1-28. Zbl0393.30011
- [8] V. V. Starkov, Bounded univalent functions realizing the extrema of two coefficients functionals at a time, in: Proc. XIth Instructional Conf. on the Theory of Extremal Problems, Łódź 1990, 31-33.
- [9] K. Tochowicz, Functions which satisfy the differential equation of Schiffer type, Zeszyty Nauk. Politechn. Rzeszowskiej Mat. Fiz. 38 (6) (1987), 103-113. Zbl0684.34006