Nonlinear orthogonal projection

Ewa Dudek; Konstanty Holly

Annales Polonici Mathematici (1994)

  • Volume: 59, Issue: 1, page 1-31
  • ISSN: 0066-2216

Abstract

top
We discuss some properties of an orthogonal projection onto a subset of a Euclidean space. The special stress is laid on projection's regularity and characterization of the interior of its domain.

How to cite

top

Ewa Dudek, and Konstanty Holly. "Nonlinear orthogonal projection." Annales Polonici Mathematici 59.1 (1994): 1-31. <http://eudml.org/doc/262397>.

@article{EwaDudek1994,
abstract = {We discuss some properties of an orthogonal projection onto a subset of a Euclidean space. The special stress is laid on projection's regularity and characterization of the interior of its domain.},
author = {Ewa Dudek, Konstanty Holly},
journal = {Annales Polonici Mathematici},
keywords = {projection's regularity and interior of its domain; regularity; metric space; orthogonal projection; euclidean space; local Lipschitz condition},
language = {eng},
number = {1},
pages = {1-31},
title = {Nonlinear orthogonal projection},
url = {http://eudml.org/doc/262397},
volume = {59},
year = {1994},
}

TY - JOUR
AU - Ewa Dudek
AU - Konstanty Holly
TI - Nonlinear orthogonal projection
JO - Annales Polonici Mathematici
PY - 1994
VL - 59
IS - 1
SP - 1
EP - 31
AB - We discuss some properties of an orthogonal projection onto a subset of a Euclidean space. The special stress is laid on projection's regularity and characterization of the interior of its domain.
LA - eng
KW - projection's regularity and interior of its domain; regularity; metric space; orthogonal projection; euclidean space; local Lipschitz condition
UR - http://eudml.org/doc/262397
ER -

References

top
  1. [1] E. Asplund, Čebyšev sets in Hilbert space, Trans. Amer. Math. Soc. 144 (1969), 235-240. Zbl0187.05504
  2. [2] L. N. H. Bunt, Contributions to the theory of convex point sets, Ph.D. Thesis, Groningen, 1934 (in Dutch). 
  3. [3] E. Dudek, Orthogonal projection onto a subset of a Euclidean space, Master's thesis, Kraków, 1989 (in Polish). 
  4. [4] N. V. Efimov and S. B. Stechkin, Support properties of sets in Banach spaces and Chebyshev sets, Dokl. Akad. Nauk SSSR 127 (1959), 254-257 (in Russian). Zbl0095.08903
  5. [5] H. Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418-491. Zbl0089.38402
  6. [6] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1977. Zbl0361.35003
  7. [7] M. W. Hirsch, Differential Topology, Springer, New York, 1976. 
  8. [8] E. Hopf, On non-linear partial differential equations, in: Lecture Series of the Symposium on Partial Diff. Equations, Berkeley, 1955, The Univ. of Kansas, 1957, 1-29. 
  9. [9] G. Jasiński, A characterization of the differentiable retractions, Univ. Iagell. Acta Math. 26 (1987), 99-103. 
  10. [10] V. L. Klee, Convexity of Chebyshev sets, Math. Ann. 142 (1961), 292-304. Zbl0091.27701
  11. [11] V. L. Klee, Remarks on nearest points in normed linear spaces, in: Proc. Colloquium on Convexity (Copenhagen, 1965), Kobenhavns Univ. Mat. Inst., Copenhagen, 1967, 168-176. 
  12. [12] S. G. Krantz and H. R. Parks, Distance to C k hypersurfaces, J. Differential Equations 40 (1981), 116-120. 
  13. [13] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod and Gauthier-Villars, Paris, 1969. 
  14. [14] T. Motzkin, Sur quelques propriétés caractéristiques des ensembles convexes, Atti R. Accad. Lincei Rend. (6) 21 (1935), 562-567. Zbl0011.41105
  15. [15] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1974. Zbl0278.26001
  16. [16] J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables, Philos. Trans. Roy. Soc. London Ser. A 264 (1969), 413-496. Zbl0181.38003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.