A saturation theorem for combinations of Bernstein-Durrmeyer polynomials
Annales Polonici Mathematici (1992)
- Volume: 57, Issue: 2, page 157-164
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topP. N. Agrawal, and Vijay Gupta. "A saturation theorem for combinations of Bernstein-Durrmeyer polynomials." Annales Polonici Mathematici 57.2 (1992): 157-164. <http://eudml.org/doc/262423>.
@article{P1992,
abstract = {We prove a local saturation theorem in ordinary approximation for combinations of Durrmeyer's integral modification of Bernstein polynomials.},
author = {P. N. Agrawal, Vijay Gupta},
journal = {Annales Polonici Mathematici},
keywords = {linear combinations; compact support; inner product; Bernstein-Durrmeyer polynomials; Bernstein-Durrmeyer operators},
language = {eng},
number = {2},
pages = {157-164},
title = {A saturation theorem for combinations of Bernstein-Durrmeyer polynomials},
url = {http://eudml.org/doc/262423},
volume = {57},
year = {1992},
}
TY - JOUR
AU - P. N. Agrawal
AU - Vijay Gupta
TI - A saturation theorem for combinations of Bernstein-Durrmeyer polynomials
JO - Annales Polonici Mathematici
PY - 1992
VL - 57
IS - 2
SP - 157
EP - 164
AB - We prove a local saturation theorem in ordinary approximation for combinations of Durrmeyer's integral modification of Bernstein polynomials.
LA - eng
KW - linear combinations; compact support; inner product; Bernstein-Durrmeyer polynomials; Bernstein-Durrmeyer operators
UR - http://eudml.org/doc/262423
ER -
References
top- [1] P. N. Agrawal and V. Gupta, Simultaneous approximation by linear combination of the modified Bernstein polynomials, Bull. Soc. Math. Grèce 30 (1989), 21-29 (1990). Zbl0747.41014
- [2] P. N. Agrawal and V. Gupta, Inverse theorem for linear combinations of modified Bernstein polynomials, preprint. Zbl0833.41011
- [3] M. M. Derriennic, Sur l'approximation de fonctions intégrables sur [0,1] par des polynômes de Bernstein modifiés, J. Approx. Theory 31 (1981), 325-343. Zbl0475.41025
- [4] Z. Ditzian and K. Ivanov, Bernstein-type operators and their derivatives, ibid. 56 (1989), 72-90.
- [5] J. L. Durrmeyer, Une formule d'inversion de la transformée de Laplace: Application à la théorie des moments, Thèse de 3e cycle, Faculté des Sciences de l'Université de Paris, 1967.
- [6] H. S. Kasana and P. N. Agrawal, On sharp estimates and linear combinations of modified Bernstein polynomials, Bull. Soc. Math. Belg. Sér. B 40 (1) (1988), 61-71. Zbl0658.41009
- [7] C. P. May, Saturation and inverse theorems for combinations of a class of exponential type operators, Canad. J. Math. 28 (1976), 1224-1250. Zbl0342.41018
- [8] B. Wood, -approximation by linear combinations of integral Bernstein-type operators, Anal. Numér. Théor. Approx. 13 (1) (1984), 65-72.
- [9] B. Wood, Uniform approximation by linear combinations of bernstein-type polynomials, J. Approx. Theory 41 (1984), 51-55. Zbl0563.41019
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.