A constant in pluripotential theory

Zbigniew Błocki

Annales Polonici Mathematici (1992)

  • Volume: 56, Issue: 2, page 213-217
  • ISSN: 0066-2216

Abstract

top
We compute the constant sup ( 1 / d e g P ) ( m a x S l o g | P | - S l o g | P | d σ ) : P a polynomial in n , where S denotes the euclidean unit sphere in n and σ its unitary surface measure.

How to cite

top

Zbigniew Błocki. "A constant in pluripotential theory." Annales Polonici Mathematici 56.2 (1992): 213-217. <http://eudml.org/doc/262432>.

@article{ZbigniewBłocki1992,
abstract = {We compute the constant sup $(1/degP)(max_S log|P| - ∫_S log|P|dσ)$ : P a polynomial in $ℂ^n$, where S denotes the euclidean unit sphere in $ℂ^n$ and σ its unitary surface measure.},
author = {Zbigniew Błocki},
journal = {Annales Polonici Mathematici},
keywords = {set of plurisubharmonic functions},
language = {eng},
number = {2},
pages = {213-217},
title = {A constant in pluripotential theory},
url = {http://eudml.org/doc/262432},
volume = {56},
year = {1992},
}

TY - JOUR
AU - Zbigniew Błocki
TI - A constant in pluripotential theory
JO - Annales Polonici Mathematici
PY - 1992
VL - 56
IS - 2
SP - 213
EP - 217
AB - We compute the constant sup $(1/degP)(max_S log|P| - ∫_S log|P|dσ)$ : P a polynomial in $ℂ^n$, where S denotes the euclidean unit sphere in $ℂ^n$ and σ its unitary surface measure.
LA - eng
KW - set of plurisubharmonic functions
UR - http://eudml.org/doc/262432
ER -

References

top
  1. [1] H. Alexander, Projective capacity, in: Ann. of Math. Stud. 100, Princeton Univ. Press, 1981, 3-27. 
  2. [2] J.-P. Demailly, Potential theory in several complex variables, preprint, 1989. 
  3. [3] W. Rudin, Function Theory in the Unit Ball of n , Springer, 1980. 
  4. [4] J. Siciak, Extremal plurisubharmonic functions and capacities in n , Sophia Kokyuroku in Math. 14 (1982). Zbl0579.32025

NotesEmbed ?

top

You must be logged in to post comments.