# A constant in pluripotential theory

Annales Polonici Mathematici (1992)

- Volume: 56, Issue: 2, page 213-217
- ISSN: 0066-2216

## Access Full Article

top## Abstract

top## How to cite

topZbigniew Błocki. "A constant in pluripotential theory." Annales Polonici Mathematici 56.2 (1992): 213-217. <http://eudml.org/doc/262432>.

@article{ZbigniewBłocki1992,

abstract = {We compute the constant
sup $(1/degP)(max_S log|P| - ∫_S log|P|dσ)$ : P a polynomial in $ℂ^n$,
where S denotes the euclidean unit sphere in $ℂ^n$ and σ its unitary surface measure.},

author = {Zbigniew Błocki},

journal = {Annales Polonici Mathematici},

keywords = {set of plurisubharmonic functions},

language = {eng},

number = {2},

pages = {213-217},

title = {A constant in pluripotential theory},

url = {http://eudml.org/doc/262432},

volume = {56},

year = {1992},

}

TY - JOUR

AU - Zbigniew Błocki

TI - A constant in pluripotential theory

JO - Annales Polonici Mathematici

PY - 1992

VL - 56

IS - 2

SP - 213

EP - 217

AB - We compute the constant
sup $(1/degP)(max_S log|P| - ∫_S log|P|dσ)$ : P a polynomial in $ℂ^n$,
where S denotes the euclidean unit sphere in $ℂ^n$ and σ its unitary surface measure.

LA - eng

KW - set of plurisubharmonic functions

UR - http://eudml.org/doc/262432

ER -

## References

top- [1] H. Alexander, Projective capacity, in: Ann. of Math. Stud. 100, Princeton Univ. Press, 1981, 3-27.
- [2] J.-P. Demailly, Potential theory in several complex variables, preprint, 1989.
- [3] W. Rudin, Function Theory in the Unit Ball of ${\u2102}^{n}$, Springer, 1980.
- [4] J. Siciak, Extremal plurisubharmonic functions and capacities in ${\u2102}^{n}$, Sophia Kokyuroku in Math. 14 (1982). Zbl0579.32025

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.