A type of non-equivalent pseudogroups. Application to foliations

Jesús A. Alvarez López

Annales Polonici Mathematici (1992)

  • Volume: 56, Issue: 2, page 187-194
  • ISSN: 0066-2216

Abstract

top
A topological result for non-Hausdorff spaces is proved and used to obtain a non-equivalence theorem for pseudogroups of local transformations. This theorem is applied to the holonomy pseudogroup of foliations.

How to cite

top

Jesús A. Alvarez López. "A type of non-equivalent pseudogroups. Application to foliations." Annales Polonici Mathematici 56.2 (1992): 187-194. <http://eudml.org/doc/262444>.

@article{JesúsA1992,
abstract = {A topological result for non-Hausdorff spaces is proved and used to obtain a non-equivalence theorem for pseudogroups of local transformations. This theorem is applied to the holonomy pseudogroup of foliations.},
author = {Jesús A. Alvarez López},
journal = {Annales Polonici Mathematici},
keywords = {pseudogroup; foliation; holonomy; pseudogroups; non-equivalent; holonomy pseudogroups of foliations},
language = {eng},
number = {2},
pages = {187-194},
title = {A type of non-equivalent pseudogroups. Application to foliations},
url = {http://eudml.org/doc/262444},
volume = {56},
year = {1992},
}

TY - JOUR
AU - Jesús A. Alvarez López
TI - A type of non-equivalent pseudogroups. Application to foliations
JO - Annales Polonici Mathematici
PY - 1992
VL - 56
IS - 2
SP - 187
EP - 194
AB - A topological result for non-Hausdorff spaces is proved and used to obtain a non-equivalence theorem for pseudogroups of local transformations. This theorem is applied to the holonomy pseudogroup of foliations.
LA - eng
KW - pseudogroup; foliation; holonomy; pseudogroups; non-equivalent; holonomy pseudogroups of foliations
UR - http://eudml.org/doc/262444
ER -

References

top
  1. [H1] A. Haefliger, Groupoédes d'holonomie et classifiants, in: Structures Transverses des Feuilletages, Toulouse 1982, Astérisque 116 (1984), 70-97. 
  2. [H2] A. Haefliger, Pseudogroups of local isometries, in: Differential Geometry, Res. Notes in Math. 131, Pitman, 1985, 174-197. 
  3. [H3] A. Haefliger, Leaf closures in Riemannian foliations, in: A Fête of Topology, Academic Press, Boston, Mass., 1988, 3-32. 
  4. [HR] A. Haefliger et G. Reeb, Variétés (non séparées) à une dimension et structures feuilletées du plan, Enseign. Math. 3 (1957), 107-125. Zbl0079.17101
  5. [M] P. Molino, Géométrie globale des feuilletages riemanniens, Nederl. Akad. Wetensch. Indag. Math. 44 (1982), 45-76. Zbl0516.57016
  6. [W] H. E. Winkelnkemper, The graph of a foliation, Ann. Global Anal. Geom. 1 (3) (1983), 51-75. Zbl0526.53039

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.