A type of non-equivalent pseudogroups. Application to foliations
Annales Polonici Mathematici (1992)
- Volume: 56, Issue: 2, page 187-194
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topJesús A. Alvarez López. "A type of non-equivalent pseudogroups. Application to foliations." Annales Polonici Mathematici 56.2 (1992): 187-194. <http://eudml.org/doc/262444>.
@article{JesúsA1992,
abstract = {A topological result for non-Hausdorff spaces is proved and used to obtain a non-equivalence theorem for pseudogroups of local transformations. This theorem is applied to the holonomy pseudogroup of foliations.},
author = {Jesús A. Alvarez López},
journal = {Annales Polonici Mathematici},
keywords = {pseudogroup; foliation; holonomy; pseudogroups; non-equivalent; holonomy pseudogroups of foliations},
language = {eng},
number = {2},
pages = {187-194},
title = {A type of non-equivalent pseudogroups. Application to foliations},
url = {http://eudml.org/doc/262444},
volume = {56},
year = {1992},
}
TY - JOUR
AU - Jesús A. Alvarez López
TI - A type of non-equivalent pseudogroups. Application to foliations
JO - Annales Polonici Mathematici
PY - 1992
VL - 56
IS - 2
SP - 187
EP - 194
AB - A topological result for non-Hausdorff spaces is proved and used to obtain a non-equivalence theorem for pseudogroups of local transformations. This theorem is applied to the holonomy pseudogroup of foliations.
LA - eng
KW - pseudogroup; foliation; holonomy; pseudogroups; non-equivalent; holonomy pseudogroups of foliations
UR - http://eudml.org/doc/262444
ER -
References
top- [H1] A. Haefliger, Groupoédes d'holonomie et classifiants, in: Structures Transverses des Feuilletages, Toulouse 1982, Astérisque 116 (1984), 70-97.
- [H2] A. Haefliger, Pseudogroups of local isometries, in: Differential Geometry, Res. Notes in Math. 131, Pitman, 1985, 174-197.
- [H3] A. Haefliger, Leaf closures in Riemannian foliations, in: A Fête of Topology, Academic Press, Boston, Mass., 1988, 3-32.
- [HR] A. Haefliger et G. Reeb, Variétés (non séparées) à une dimension et structures feuilletées du plan, Enseign. Math. 3 (1957), 107-125. Zbl0079.17101
- [M] P. Molino, Géométrie globale des feuilletages riemanniens, Nederl. Akad. Wetensch. Indag. Math. 44 (1982), 45-76. Zbl0516.57016
- [W] H. E. Winkelnkemper, The graph of a foliation, Ann. Global Anal. Geom. 1 (3) (1983), 51-75. Zbl0526.53039
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.