Continuous subadditive processes and formulae for Lyapunov characteristic exponents

Wojciech Słomczyński

Annales Polonici Mathematici (1995)

  • Volume: 61, Issue: 2, page 101-134
  • ISSN: 0066-2216

Abstract

top
Asymptotic properties of various semidynamical systems can be examined by means of continuous subadditive processes. To investigate such processes we consider different types of exponents: characteristic, central, singular and global exponents and we study their properties. We derive formulae for central and singular exponents and show that they provide upper bounds for characteristic exponents. The concept of conjugate processes introduced in this paper allows us to find lower bounds for characteristic exponents. We also give applications to continuous cocycles.

How to cite

top

Wojciech Słomczyński. "Continuous subadditive processes and formulae for Lyapunov characteristic exponents." Annales Polonici Mathematici 61.2 (1995): 101-134. <http://eudml.org/doc/262468>.

@article{WojciechSłomczyński1995,
abstract = {Asymptotic properties of various semidynamical systems can be examined by means of continuous subadditive processes. To investigate such processes we consider different types of exponents: characteristic, central, singular and global exponents and we study their properties. We derive formulae for central and singular exponents and show that they provide upper bounds for characteristic exponents. The concept of conjugate processes introduced in this paper allows us to find lower bounds for characteristic exponents. We also give applications to continuous cocycles.},
author = {Wojciech Słomczyński},
journal = {Annales Polonici Mathematici},
keywords = {Lyapunov exponents; subadditive processes; invariant measures; cocycles; asymptotic properties; semidynamical systems; upper bounds; characteristic exponents; conjugate processes; lower bounds; continuous cocycles},
language = {eng},
number = {2},
pages = {101-134},
title = {Continuous subadditive processes and formulae for Lyapunov characteristic exponents},
url = {http://eudml.org/doc/262468},
volume = {61},
year = {1995},
}

TY - JOUR
AU - Wojciech Słomczyński
TI - Continuous subadditive processes and formulae for Lyapunov characteristic exponents
JO - Annales Polonici Mathematici
PY - 1995
VL - 61
IS - 2
SP - 101
EP - 134
AB - Asymptotic properties of various semidynamical systems can be examined by means of continuous subadditive processes. To investigate such processes we consider different types of exponents: characteristic, central, singular and global exponents and we study their properties. We derive formulae for central and singular exponents and show that they provide upper bounds for characteristic exponents. The concept of conjugate processes introduced in this paper allows us to find lower bounds for characteristic exponents. We also give applications to continuous cocycles.
LA - eng
KW - Lyapunov exponents; subadditive processes; invariant measures; cocycles; asymptotic properties; semidynamical systems; upper bounds; characteristic exponents; conjugate processes; lower bounds; continuous cocycles
UR - http://eudml.org/doc/262468
ER -

References

top
  1. [1] H. D. I. Abarbanel, R. Brown and M. B. Kennel, Variation of Lyapunov exponents on a strange attractor, J. Nonlinear Sci. 1 (1991), 175-199. Zbl0797.58053
  2. [2] J. C. Alexander and J. A. Yorke, Fat baker's transformations, Ergodic Theory Dynamical Systems 4 (1984), 1-23. Zbl0553.58020
  3. [3] G. Benettin, L. Galgani and J.-M. Strelcyn, Kolmogorov entropy and numerical experiments, Phys. Rev. A 14 (1976), 411-418. 
  4. [4] G. Benettin, L. Galgani, A. Giorgilli and J.-M. Strelcyn, Lyapunov characteristic exponents for smooth dynamical systems; a method for computing all of them, Part 1: Theory, Meccanica 15 (1980), 9-20; Part 2: Numerical application, Phys. Rev. A, 21-29. Zbl0488.70015
  5. [5] R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math. 29 (1975), 181-202. Zbl0311.58010
  6. [6] L. A. Bunimovich, Statistical properties of Lorenz attractors, in: Nonlinear Dynamics and Turbulence, G. I. Barenblatt, G. Iooss and D. D. Joseph (eds.), Pitman, Boston, Mass., 1983. Zbl0578.58025
  7. [7] L. A. Bunimovich and Ya. G. Sinaĭ, Stochasticity of the attractor in the Lorenz model, in: Nonlinear Waves, A. V. Gaponov-Grekhov (ed.), Nauka, Moscow, 1979, 212-226. 
  8. [8] B. F. Bylov, R. È. Vinograd, D. M. Grobman and V. V. Nemytskiĭ, Theory of Lyapunov Exponents, Nauka, Moscow, 1966 (in Russian). 
  9. [9] A. Carverhill, Flows of stochastic dynamical systems: Ergodic theory, Stochastics 14 (1985), 273-317. Zbl0536.58019
  10. [10] P. Constantin and C. Foiaş, Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for 2D Navier-Stokes equations, Comm. Pure Appl. Math. 38 (1985), 1-27. Zbl0582.35092
  11. [11] H. Crauel, Lyapunov exponents and invariant measures of stochastic systems on manifolds, in: Lyapunov Exponents, Proceedings, Bremen 1984, L. Arnold and V. Wihstutz (eds.), Lecture Notes in Math. 1186, Springer, 1986, 271-291. 
  12. [12] N. Dunford and J. T. Schwartz, Linear Operators, Part I, Wiley, New York, 1958. 
  13. [13] J. P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Modern Phys. 57 (1985), 617-656. Zbl0989.37516
  14. [14] A. Eden, Local Lyapunov exponents and a local estimate of Hausdorff dimension, RAIRO Modél. Math. Anal. Numér. 23 (1989), 405-413. Zbl0684.58022
  15. [15] A. Eden, Local estimates for the Hausdorff dimension of an attractor, J. Math. Anal. Appl. 150 (1990), 100-119. Zbl0714.58035
  16. [16] J. D. Farmer, Chaotic attractors of an infinite-dimensional dynamical system, Phys. D 4 (1982), 366-393. Zbl1194.37052
  17. [17] J. D. Farmer, E. Ott and J. A. Yorke, The dimension of chaotic attractors, Phys. D 7 (1983), 153-180. Zbl0561.58032
  18. [18] P. Frederickson, J. L. Kaplan, E. D. Yorke and J. A. Yorke, The Liapunov dimension of strange attractors, J. Differential Equations 49 (1983), 185-207. Zbl0515.34040
  19. [19] C. Froeschle, The Lyapunov characteristic exponents and applications, J. Méc. Théor. Appl. Numéro spécial (1984), 101-132. Zbl0583.58021
  20. [20] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press, Princeton, 1981. Zbl0459.28023
  21. [21] C. Grebogi, E. Ott and J. A. Yorke, Crises, sudden changes in chaotic attractors, and transient chaos, Phys. D 7 (1983), 181-200. Zbl0561.58029
  22. [22] M. R. Herman, Construction d'un difféomorphisme minimal d'entropie topologique non nulle, Ergodic Theory Dynamical Systems 1 (1981), 65-76. Zbl0469.58008
  23. [23] R. A. Johnson, Ergodic theory and linear differential equations, J. Differential Equations 28 (1978), 23-34. Zbl0399.34039
  24. [24] R. A. Johnson, K. J. Palmer and G. Sell, Ergodic properties of linear dynamical systems, SIAM J. Math. Anal. 18 (1987), 1-33. Zbl0641.58034
  25. [25] Yu. Kifer, Characteristic exponents of dynamical systems in metric spaces, Ergodic Theory Dynamical Systems 3 (1982), 119-127. Zbl0525.34035
  26. [26] Yu. Kifer, Ergodic Theory of Random Transformations, Birkhäuser, Boston, 1986. Zbl0604.28014
  27. [27] J. F. C. Kingman, The ergodic theory of subadditive stochastic processes, J. Roy. Statist. Soc. Ser. B 30 (1968), 499-510. Zbl0182.22802
  28. [28] J. F. C. Kingman, Subadditive ergodic theory, Ann. Probab. 1 (1973), 883-909. Zbl0311.60018
  29. [29] J. F. C. Kingman, Subadditive processes, in: Ecole d'Eté de Probabilités de Saint-Flour V-1975, Lecture Notes in Math. 539, Springer, 1976, 167-223. 
  30. [30] U. Krengel, Ergodic Theorems, de Gruyter, Berlin, 1985. 
  31. [31] F. Ledrappier, Some relations between dimension and Lyapounov exponents, Comm. Math. Phys. 81 (1981), 229-238. Zbl0486.58021
  32. [32] R. Ma né, Oseledec's theorem from the generic viewpoint, in: Proceedings Internat. Congress Math., Warszawa 1983, PWN, Warszawa, 1984, 1269-1276. 
  33. [33] V. M. Millonshchikov, Typical properties of conditional exponential stability IV, VIII, Differentsial'nye Uravneniya 20 (1984), 241-257, 1366-1376 (in Russian); English transl.: Differential Equations 20 (1984), 187-201, 1005-1014. 
  34. [34] V. I. Oseledec, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems, Trudy Moskov. Mat. Obshch. 19 (1968), 179-210 (in Russian); English transl.: Trans. Moscow Math. Soc. 19 (1968), 197-231. 
  35. [35] K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York, 1967. Zbl0153.19101
  36. [36] M. S. Ranghunathan, A proof of Oseledec's multiplicative ergodic theorem, Israel J. Math. 32 (1979), 356-362. Zbl0415.28013
  37. [37] D. Ruelle, Ergodic theory of differentiable dynamical systems, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 275-306. Zbl0426.58014
  38. [38] D. Ruelle, Characteristic exponents and invariant manifolds in Hilbert space, Ann. of Math. 115 (1982), 243-290. Zbl0493.58015
  39. [39] S. H. Saperstone, Semidynamical Systems in Infinite Dimensional Spaces, Springer, New York, 1981. Zbl0487.34044
  40. [40] M. A. Shereshevsky, Lyapunov exponents for one-dimensional cellular automata, J. Nonlinear Sci. 2 (1992), 1-8. Zbl0872.58038
  41. [41] I. Shimada and T. Nagashima, A numerical approach to ergodic problem of dissipative dynamical systems, Progr. Theoret. Phys. 61 (1979), 1605-1616. Zbl1171.34327
  42. [42] W. Słomczyński, Subadditive ergodic theorems in C(X), Riv. Mat. Pura Appl., to appear. Zbl0819.34036
  43. [43] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988. Zbl0662.35001
  44. [44] P. Thieullen, Entropy and the Hausdorff dimension for infinite-dimensional dynamical systems, J. Dynamics Differential Equations 4 (1992), 127-159. Zbl0744.34047
  45. [45] R. È. Vinograd, On the central characteristic exponent of a system of differential equations, Mat. Sb. 42 (84) (1957), 207-222 (in Russian). 
  46. [46] P. Walters, Unique ergodicity and random matrix products, in: Lyapunov Exponents, Proceedings, Bremen 1984, L. Arnold and V. Wihstutz (eds.), Lecture Notes in Math. 1186, Springer, 1986, 37-55. 
  47. [47] A. Wolf, J. B. Swift, H. L. Swinney and J. A. Vastano, Determining Lyapunov exponents from a time series, Phys. D 16 (1985), 285-317. Zbl0585.58037

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.