Existence theorems for a semilinear elliptic boundary value problem

Salvatore A. Marano

Annales Polonici Mathematici (1994)

  • Volume: 60, Issue: 1, page 57-67
  • ISSN: 0066-2216

How to cite

top

Salvatore A. Marano. "Existence theorems for a semilinear elliptic boundary value problem." Annales Polonici Mathematici 60.1 (1994): 57-67. <http://eudml.org/doc/262476>.

@article{SalvatoreA1994,
abstract = {},
author = {Salvatore A. Marano},
journal = {Annales Polonici Mathematici},
keywords = {elliptic differential inclusions; semilinear elliptic equations; strong solutions; sufficient conditions; strong solution},
language = {eng},
number = {1},
pages = {57-67},
title = {Existence theorems for a semilinear elliptic boundary value problem},
url = {http://eudml.org/doc/262476},
volume = {60},
year = {1994},
}

TY - JOUR
AU - Salvatore A. Marano
TI - Existence theorems for a semilinear elliptic boundary value problem
JO - Annales Polonici Mathematici
PY - 1994
VL - 60
IS - 1
SP - 57
EP - 67
AB -
LA - eng
KW - elliptic differential inclusions; semilinear elliptic equations; strong solutions; sufficient conditions; strong solution
UR - http://eudml.org/doc/262476
ER -

References

top
  1. [1] R. A. Adams, Sobolev Spaces, Academic Press, 1975. 
  2. [2] A. Alvino e G. Trombetti, Sulle migliori costanti di maggiorazione per una classe di equazioni ellitiche degeneri e non, Ricerche Mat. 30 (1981), 15-33. Zbl0489.35013
  3. [3] H. Amann, Nonlinear operators in ordered Banach spaces and some applications to nonlinear boundary value problems, in: Lecture Notes in Math. 543, Springer, 1976, 1-55. 
  4. [4] Yu. G. Borisovich, B. D. Gel'man, A. D. Myshkis and V. V. Obukhovskii, Multivalued mappings, J. Soviet Math. 24 (1984), 719-791. Zbl0529.54013
  5. [5] K. C. Chang, The obstacle problem and partial differential equations with discontinuous nonlinearities, Comm. Pure Appl. Math. 33 (1980), 117-146. Zbl0405.35074
  6. [6] K. C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102-129. Zbl0487.49027
  7. [7] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, 1983. Zbl0562.35001
  8. [8] C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53-72. Zbl0296.28003
  9. [9] J. K. Kazdan and F. W. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 (1975), 567-597. Zbl0325.35038
  10. [10] S. A. Marano, Existence theorems for a multivalued boundary value problem, Bull. Austral. Math. Soc. 45 (1992), 249-260. Zbl0741.34008
  11. [11] J. Mawhin, J. R. Ward, Jr., and M. Willem, Variational methods and semilinear elliptic equations, Arch. Rational Mech. Anal. 95 (1986), 269-277. Zbl0656.35044
  12. [12] C. Miranda, Partial Differential Equations of Elliptic Type, 2nd revised ed., Springer, 1970. Zbl0198.14101
  13. [13] O. Naselli Ricceri and B. Ricceri, An existence theorem for inclusions of the type Ψ(u)(t) ∈ F(t,Φ(u)(t)) and application to a multivalued boundary value problem, Appl. Anal. 38 (1990), 259-270. Zbl0687.47044
  14. [14] C. A. Stuart, Maximal and minimal solutions of elliptic differential equations with discontinuous nonlinearities, Math. Z. 163 (1978), 239-249. Zbl0403.35036
  15. [15] C. A. Stuart and J. F. Toland, A variational method for boundary value problems with discontinuous nonlinearities, J. London Math. Soc. 21 (1980), 319-328. Zbl0434.35042
  16. [16] G. Talenti, Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), 697-718. Zbl0341.35031
  17. [17] M. Zuluaga, Existence of solutions for some elliptic problems with critical Sobolev exponents, Rev. Mat. Iberoamericana 5 (1989), 183-193. Zbl0741.35018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.