Existence theorems for a semilinear elliptic boundary value problem
Annales Polonici Mathematici (1994)
- Volume: 60, Issue: 1, page 57-67
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topSalvatore A. Marano. "Existence theorems for a semilinear elliptic boundary value problem." Annales Polonici Mathematici 60.1 (1994): 57-67. <http://eudml.org/doc/262476>.
@article{SalvatoreA1994,
abstract = {},
author = {Salvatore A. Marano},
journal = {Annales Polonici Mathematici},
keywords = {elliptic differential inclusions; semilinear elliptic equations; strong solutions; sufficient conditions; strong solution},
language = {eng},
number = {1},
pages = {57-67},
title = {Existence theorems for a semilinear elliptic boundary value problem},
url = {http://eudml.org/doc/262476},
volume = {60},
year = {1994},
}
TY - JOUR
AU - Salvatore A. Marano
TI - Existence theorems for a semilinear elliptic boundary value problem
JO - Annales Polonici Mathematici
PY - 1994
VL - 60
IS - 1
SP - 57
EP - 67
AB -
LA - eng
KW - elliptic differential inclusions; semilinear elliptic equations; strong solutions; sufficient conditions; strong solution
UR - http://eudml.org/doc/262476
ER -
References
top- [1] R. A. Adams, Sobolev Spaces, Academic Press, 1975.
- [2] A. Alvino e G. Trombetti, Sulle migliori costanti di maggiorazione per una classe di equazioni ellitiche degeneri e non, Ricerche Mat. 30 (1981), 15-33. Zbl0489.35013
- [3] H. Amann, Nonlinear operators in ordered Banach spaces and some applications to nonlinear boundary value problems, in: Lecture Notes in Math. 543, Springer, 1976, 1-55.
- [4] Yu. G. Borisovich, B. D. Gel'man, A. D. Myshkis and V. V. Obukhovskii, Multivalued mappings, J. Soviet Math. 24 (1984), 719-791. Zbl0529.54013
- [5] K. C. Chang, The obstacle problem and partial differential equations with discontinuous nonlinearities, Comm. Pure Appl. Math. 33 (1980), 117-146. Zbl0405.35074
- [6] K. C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102-129. Zbl0487.49027
- [7] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, 1983. Zbl0562.35001
- [8] C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53-72. Zbl0296.28003
- [9] J. K. Kazdan and F. W. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 (1975), 567-597. Zbl0325.35038
- [10] S. A. Marano, Existence theorems for a multivalued boundary value problem, Bull. Austral. Math. Soc. 45 (1992), 249-260. Zbl0741.34008
- [11] J. Mawhin, J. R. Ward, Jr., and M. Willem, Variational methods and semilinear elliptic equations, Arch. Rational Mech. Anal. 95 (1986), 269-277. Zbl0656.35044
- [12] C. Miranda, Partial Differential Equations of Elliptic Type, 2nd revised ed., Springer, 1970. Zbl0198.14101
- [13] O. Naselli Ricceri and B. Ricceri, An existence theorem for inclusions of the type Ψ(u)(t) ∈ F(t,Φ(u)(t)) and application to a multivalued boundary value problem, Appl. Anal. 38 (1990), 259-270. Zbl0687.47044
- [14] C. A. Stuart, Maximal and minimal solutions of elliptic differential equations with discontinuous nonlinearities, Math. Z. 163 (1978), 239-249. Zbl0403.35036
- [15] C. A. Stuart and J. F. Toland, A variational method for boundary value problems with discontinuous nonlinearities, J. London Math. Soc. 21 (1980), 319-328. Zbl0434.35042
- [16] G. Talenti, Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), 697-718. Zbl0341.35031
- [17] M. Zuluaga, Existence of solutions for some elliptic problems with critical Sobolev exponents, Rev. Mat. Iberoamericana 5 (1989), 183-193. Zbl0741.35018
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.