Some existence results for solutions of differential inclusions with retardations
L. H. Erbe; W. Krawcewicz; Shaozhu Chen
Annales Polonici Mathematici (1991)
- Volume: 54, Issue: 3, page 227-239
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topL. H. Erbe, W. Krawcewicz, and Shaozhu Chen. "Some existence results for solutions of differential inclusions with retardations." Annales Polonici Mathematici 54.3 (1991): 227-239. <http://eudml.org/doc/262514>.
@article{L1991,
abstract = {Using the topological transversality method of Granas we prove an existence result for a system of differential inclusions with retardations of the form y'' ∈ F(t,y,y',Φ(y)). The result is applied to the study of the existence of solutions to an equation of the trajectory of an r-stage rocket with retardations.},
author = {L. H. Erbe, W. Krawcewicz, Shaozhu Chen},
journal = {Annales Polonici Mathematici},
keywords = {boundary value problem; differential inclusion with retardations; topological transversality; retarded differential inclusions; Carathéodory multifunction; topological transversality method; a priori bounds technique},
language = {eng},
number = {3},
pages = {227-239},
title = {Some existence results for solutions of differential inclusions with retardations},
url = {http://eudml.org/doc/262514},
volume = {54},
year = {1991},
}
TY - JOUR
AU - L. H. Erbe
AU - W. Krawcewicz
AU - Shaozhu Chen
TI - Some existence results for solutions of differential inclusions with retardations
JO - Annales Polonici Mathematici
PY - 1991
VL - 54
IS - 3
SP - 227
EP - 239
AB - Using the topological transversality method of Granas we prove an existence result for a system of differential inclusions with retardations of the form y'' ∈ F(t,y,y',Φ(y)). The result is applied to the study of the existence of solutions to an equation of the trajectory of an r-stage rocket with retardations.
LA - eng
KW - boundary value problem; differential inclusion with retardations; topological transversality; retarded differential inclusions; Carathéodory multifunction; topological transversality method; a priori bounds technique
UR - http://eudml.org/doc/262514
ER -
References
top- [1] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer, 1977.
- [2] K. C. Chang, The obstacle problems and partial differential equations with discontinuous nonlinearities, Comm. Pure Appl. Math. 33 (1980), 117-146. Zbl0405.35074
- [3] J. Dugundji and A. Granas, Fixed Point Theory, Vol. 1, PWN, Warszawa 1982.
- [4] J. Duvallet, A theorem of existence for discontinuous differential systems with two point boundary conditions, Nonlinear Anal. 13 (1989), 43-51.
- [5] L. H. Erbe and W. Krawcewicz, Nonlinear boundary value problems for differential inclusions y'' ∈ F(t,y,y'), this issue, 195-226. Zbl0731.34078
- [6] L. H. Erbe and K. Schmitt, On solvability of boundary value problems for systems of differential equations, J. Appl. Math. Phys. 38 (1987), 184-192. Zbl0635.34016
- [7] M. Frigon, Application de la théorie de la transversalité topologique à des problèmes non linéaires pour certaines classes d'équations différentielles ordinaires, Dissertationes Math. 296 (1990).
- [8] A. Granas, Homotopy extension theorem in Banach spaces and some of its applications to the theory of nonlinear equations, Bull. Acad. Polon. Sci. 7 (1959), 387-394. Zbl0092.32302
- [9] A. Granas et Zine el Abdine Guennoun, Quelques résultats dans la théorie de Bernstein-Carathéodory de l'équation y'' = f(t,y,y'), C. R. Acad. Sci. Paris Sér. I 306 (1988), 703-706.
- [10] A. Granas, R. Guenther and J. W. Lee, Nonlinear boundary value problems for ordinary differential equations, Dissertationes Math. 244 (1981).
- [11] A. Granas, R. Guenther and J. W. Lee, On a theorem of S. Bernstein, Pacific J. Math. 74 (1978), 78-82.
- [12] A. Granas, R. Guenther and J. W. Lee, Nonlinear boundary value problems for some classes of ordinary differential equations, Rocky Mountain J. Math. 10 (1980), 35-58. Zbl0476.34017
- [13] J. Haddad and J. M. Lasry, Periodic solutions of functional differential inclusions and fixed points of G-selectionable correspondences, J. Math. Anal. Appl. 110 (1983), 295-312. Zbl0539.34031
- [14] P. Hartman, Ordinary Differential Equations, Wiley, New York 1964. Zbl0125.32102
- [15] T. Kaczyński, Topological transversality and nonlinear equations in locally convex spaces, preprint, 1987.
- [16] W. Krawcewicz, Contribution à la théorie des équations non linéaires dans les espaces de Banach, Dissertationes Math. 273 (1988). Zbl0677.47038
- [17] T. Pruszko, Topological degree methods in multivalued boundary value problems, Nonlinear Anal. 5 (9) (1981), 953-973.
- [18] T. Pruszko, Some applications of the topological degree theory to multivalued boundary value problems, Dissertationes Math. 229 (1984). Zbl0543.34008
- [19] C. A. Stuart, Differential equations with discontinuous nonlinearities, Arch. Rational Mech. Anal. 63 (1976), 59-75. Zbl0393.34010
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.