Natural transformations between T²₁T*M and T*T²₁M

Miroslav Doupovec

Annales Polonici Mathematici (1991)

  • Volume: 56, Issue: 1, page 67-77
  • ISSN: 0066-2216

Abstract

top
We determine all natural transformations T²₁T*→ T*T²₁ where T k r M = J 0 r ( k , M ) . We also give a geometric characterization of the canonical isomorphism ψ₂ defined by Cantrijn et al.

How to cite

top

Miroslav Doupovec. "Natural transformations between T²₁T*M and T*T²₁M." Annales Polonici Mathematici 56.1 (1991): 67-77. <http://eudml.org/doc/262525>.

@article{MiroslavDoupovec1991,
abstract = {We determine all natural transformations T²₁T*→ T*T²₁ where $T^r_k M = J^r_0 (ℝ^k,M)$. We also give a geometric characterization of the canonical isomorphism ψ₂ defined by Cantrijn et al.},
author = {Miroslav Doupovec},
journal = {Annales Polonici Mathematici},
keywords = {higher order velocity; natural isomorphism; natural transformations; cotangent bundle},
language = {eng},
number = {1},
pages = {67-77},
title = {Natural transformations between T²₁T*M and T*T²₁M},
url = {http://eudml.org/doc/262525},
volume = {56},
year = {1991},
}

TY - JOUR
AU - Miroslav Doupovec
TI - Natural transformations between T²₁T*M and T*T²₁M
JO - Annales Polonici Mathematici
PY - 1991
VL - 56
IS - 1
SP - 67
EP - 77
AB - We determine all natural transformations T²₁T*→ T*T²₁ where $T^r_k M = J^r_0 (ℝ^k,M)$. We also give a geometric characterization of the canonical isomorphism ψ₂ defined by Cantrijn et al.
LA - eng
KW - higher order velocity; natural isomorphism; natural transformations; cotangent bundle
UR - http://eudml.org/doc/262525
ER -

References

top
  1. [1] F. Cantrijn, M. Crampin, W. Sarlet and D. Saunders, The canonical isomorphism between T k T * M and T * T k M , C. R. Acad. Sci. Paris 309 (1989), 1509-1514. Zbl0702.58006
  2. [2] H. Gollek, Anwendungen der Jet-Theorie auf Faserbündel und Liesche Transformationsgruppen, Math. Nachr. 53 (1972), 161-180. Zbl0245.58002
  3. [3] J. Janyška, Geometrical properties of prolongation functors, Čas. Pěst. Mat. 110 (1985), 77-86. Zbl0582.58002
  4. [4] P. Kobak, Natural liftings of vector fields to tangent bundles of 1-forms, ibid., to appear. Zbl0743.53008
  5. [5] I. Kolář and Z. Radziszewski, Natural transformations of second tangent and cotangent functors, Czechoslovak Math. J. 38 (113) (1988), 274-279. Zbl0669.53023
  6. [6] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, to appear. Zbl0782.53013
  7. [7] M. Modugno and G. Stefani, Some results on second tangent and cotangent spaces, Quaderni dell'Instituto di Matematica dell'Università di Lecce, Q. 16, 1978. 
  8. [8] A. Nijenhuis, Natural bundles and their general properties, in: Differential Geometry in honor of Yano, Kinokuniya, Tokyo 1972, 317-334 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.