Logarithmic structure of the generalized bifurcation set
Annales Polonici Mathematici (1996)
- Volume: 63, Issue: 2, page 187-197
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topS. Janeczko. "Logarithmic structure of the generalized bifurcation set." Annales Polonici Mathematici 63.2 (1996): 187-197. <http://eudml.org/doc/262533>.
@article{S1996,
abstract = {Let $G: ℂ^\{n\} × ℂ^\{r\} → ℂ$ be a holomorphic family of functions. If $Λ ⊂ ℂ^\{n\} × ℂ^\{r\}$, $π_r: ℂ^\{n\} × ℂ^\{r\} → ℂ^\{r\}$ is an analytic variety then
$Q_\{Λ\}(G) = \{(x,u) ∈ ℂ^\{n\} × ℂ^\{r\}: G(·,u) has a critical point in Λ ∩ π_\{r\}^\{-1\}(u)\}
$is a natural generalization of the bifurcation variety of G. We investigate the local structure of $Q_\{Λ\}(G)$ for locally trivial deformations of $Λ₀ = π_\{r\}^\{-1\}(0)$. In particular, we construct an algorithm for determining logarithmic stratifications provided G is versal.},
author = {S. Janeczko},
journal = {Annales Polonici Mathematici},
keywords = {bifurcations; singularities; logarithmic stratifications; generalized bifurcation sets},
language = {eng},
number = {2},
pages = {187-197},
title = {Logarithmic structure of the generalized bifurcation set},
url = {http://eudml.org/doc/262533},
volume = {63},
year = {1996},
}
TY - JOUR
AU - S. Janeczko
TI - Logarithmic structure of the generalized bifurcation set
JO - Annales Polonici Mathematici
PY - 1996
VL - 63
IS - 2
SP - 187
EP - 197
AB - Let $G: ℂ^{n} × ℂ^{r} → ℂ$ be a holomorphic family of functions. If $Λ ⊂ ℂ^{n} × ℂ^{r}$, $π_r: ℂ^{n} × ℂ^{r} → ℂ^{r}$ is an analytic variety then
$Q_{Λ}(G) = {(x,u) ∈ ℂ^{n} × ℂ^{r}: G(·,u) has a critical point in Λ ∩ π_{r}^{-1}(u)}
$is a natural generalization of the bifurcation variety of G. We investigate the local structure of $Q_{Λ}(G)$ for locally trivial deformations of $Λ₀ = π_{r}^{-1}(0)$. In particular, we construct an algorithm for determining logarithmic stratifications provided G is versal.
LA - eng
KW - bifurcations; singularities; logarithmic stratifications; generalized bifurcation sets
UR - http://eudml.org/doc/262533
ER -
References
top- [1] V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable Maps, Vol. 1, Birkhäuser, Boston, 1985. Zbl1297.32001
- [2] J. W. Bruce, Functions on discriminants, J. London Math. Soc. (2) 30 (1984), 551-567. Zbl0605.58011
- [3] J. W. Bruce and R. M. Roberts, Critical points of functions on analytic varieties, Topology 27 (1988), 57-90. Zbl0639.32008
- [4] V. Guillemin and S. Sternberg, Symplectic Techniques in Physics, Cambridge Univ. Press, Cambridge, 1984. Zbl0576.58012
- [5] S. Izumiya, Generic bifurcations of varieties, Manuscripta Math. 46 (1984), 137-164. Zbl0537.58009
- [6] S. Janeczko, On isotropic submanifolds and evolution of quasicaustics, Pacific J. of Math. 158 (1993), 317-334. Zbl0806.58023
- [7] S. Janeczko, On quasicaustics and their logarithmic vector fields, Bull. Austral. Math. Soc. 43 (1991), 365-376. Zbl0732.58006
- [8] A. Kas and M. Schlessinger, On the versal deformation of a complex space with an isolated singularity, Math. Ann. 196 (1972), 23-29. Zbl0242.32014
- [9] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, 1991. Zbl0747.32001
- [10] O. W. Lyashko, Classification of critical points of functions on a manifold with singular boundary, Funktsional. Anal. i Prilozhen. 17 (3) (1983), 28-36 (in Russian).
- [11] K. Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 265-291. Zbl0496.32007
- [12] H. Terao, The bifurcation set and logarithmic vector fields, Math. Ann. 263 (1983), 313-321. Zbl0497.32016
- [13] C. T. Wall, A splitting theorem for maps into ℝ², Math. Ann. 259 (1982), 443-453. Zbl0468.58004
- [14] V. M. Zakalyukin, Bifurcations of wavefronts depending on one parameter, Functional Anal. Appl. 10 (1976), 139-140. Zbl0345.58008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.