Logarithmic structure of the generalized bifurcation set

S. Janeczko

Annales Polonici Mathematici (1996)

  • Volume: 63, Issue: 2, page 187-197
  • ISSN: 0066-2216

Abstract

top
Let G : n × r be a holomorphic family of functions. If Λ n × r , π r : n × r r is an analytic variety then    Q Λ ( G ) = ( x , u ) n × r : G ( · , u ) h a s a c r i t i c a l p o i n t i n Λ π r - 1 ( u ) is a natural generalization of the bifurcation variety of G. We investigate the local structure of Q Λ ( G ) for locally trivial deformations of Λ = π r - 1 ( 0 ) . In particular, we construct an algorithm for determining logarithmic stratifications provided G is versal.

How to cite

top

S. Janeczko. "Logarithmic structure of the generalized bifurcation set." Annales Polonici Mathematici 63.2 (1996): 187-197. <http://eudml.org/doc/262533>.

@article{S1996,
abstract = {Let $G: ℂ^\{n\} × ℂ^\{r\} → ℂ$ be a holomorphic family of functions. If $Λ ⊂ ℂ^\{n\} × ℂ^\{r\}$, $π_r: ℂ^\{n\} × ℂ^\{r\} → ℂ^\{r\}$ is an analytic variety then   $Q_\{Λ\}(G) = \{(x,u) ∈ ℂ^\{n\} × ℂ^\{r\}: G(·,u) has a critical point in Λ ∩ π_\{r\}^\{-1\}(u)\} $is a natural generalization of the bifurcation variety of G. We investigate the local structure of $Q_\{Λ\}(G)$ for locally trivial deformations of $Λ₀ = π_\{r\}^\{-1\}(0)$. In particular, we construct an algorithm for determining logarithmic stratifications provided G is versal.},
author = {S. Janeczko},
journal = {Annales Polonici Mathematici},
keywords = {bifurcations; singularities; logarithmic stratifications; generalized bifurcation sets},
language = {eng},
number = {2},
pages = {187-197},
title = {Logarithmic structure of the generalized bifurcation set},
url = {http://eudml.org/doc/262533},
volume = {63},
year = {1996},
}

TY - JOUR
AU - S. Janeczko
TI - Logarithmic structure of the generalized bifurcation set
JO - Annales Polonici Mathematici
PY - 1996
VL - 63
IS - 2
SP - 187
EP - 197
AB - Let $G: ℂ^{n} × ℂ^{r} → ℂ$ be a holomorphic family of functions. If $Λ ⊂ ℂ^{n} × ℂ^{r}$, $π_r: ℂ^{n} × ℂ^{r} → ℂ^{r}$ is an analytic variety then   $Q_{Λ}(G) = {(x,u) ∈ ℂ^{n} × ℂ^{r}: G(·,u) has a critical point in Λ ∩ π_{r}^{-1}(u)} $is a natural generalization of the bifurcation variety of G. We investigate the local structure of $Q_{Λ}(G)$ for locally trivial deformations of $Λ₀ = π_{r}^{-1}(0)$. In particular, we construct an algorithm for determining logarithmic stratifications provided G is versal.
LA - eng
KW - bifurcations; singularities; logarithmic stratifications; generalized bifurcation sets
UR - http://eudml.org/doc/262533
ER -

References

top
  1. [1] V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable Maps, Vol. 1, Birkhäuser, Boston, 1985. Zbl1297.32001
  2. [2] J. W. Bruce, Functions on discriminants, J. London Math. Soc. (2) 30 (1984), 551-567. Zbl0605.58011
  3. [3] J. W. Bruce and R. M. Roberts, Critical points of functions on analytic varieties, Topology 27 (1988), 57-90. Zbl0639.32008
  4. [4] V. Guillemin and S. Sternberg, Symplectic Techniques in Physics, Cambridge Univ. Press, Cambridge, 1984. Zbl0576.58012
  5. [5] S. Izumiya, Generic bifurcations of varieties, Manuscripta Math. 46 (1984), 137-164. Zbl0537.58009
  6. [6] S. Janeczko, On isotropic submanifolds and evolution of quasicaustics, Pacific J. of Math. 158 (1993), 317-334. Zbl0806.58023
  7. [7] S. Janeczko, On quasicaustics and their logarithmic vector fields, Bull. Austral. Math. Soc. 43 (1991), 365-376. Zbl0732.58006
  8. [8] A. Kas and M. Schlessinger, On the versal deformation of a complex space with an isolated singularity, Math. Ann. 196 (1972), 23-29. Zbl0242.32014
  9. [9] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, 1991. Zbl0747.32001
  10. [10] O. W. Lyashko, Classification of critical points of functions on a manifold with singular boundary, Funktsional. Anal. i Prilozhen. 17 (3) (1983), 28-36 (in Russian). 
  11. [11] K. Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 265-291. Zbl0496.32007
  12. [12] H. Terao, The bifurcation set and logarithmic vector fields, Math. Ann. 263 (1983), 313-321. Zbl0497.32016
  13. [13] C. T. Wall, A splitting theorem for maps into ℝ², Math. Ann. 259 (1982), 443-453. Zbl0468.58004
  14. [14] V. M. Zakalyukin, Bifurcations of wavefronts depending on one parameter, Functional Anal. Appl. 10 (1976), 139-140. Zbl0345.58008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.