Extension of solutions for Monge-Ampère equations of hyperbolic type
Banach Center Publications (1996)
- Volume: 33, Issue: 1, page 437-447
- ISSN: 0137-6934
Access Full Article
topHow to cite
topTsuji, Mikio. "Extension of solutions for Monge-Ampère equations of hyperbolic type." Banach Center Publications 33.1 (1996): 437-447. <http://eudml.org/doc/262541>.
@article{Tsuji1996,
author = {Tsuji, Mikio},
journal = {Banach Center Publications},
keywords = {Monge-Ampère equations},
language = {eng},
number = {1},
pages = {437-447},
title = {Extension of solutions for Monge-Ampère equations of hyperbolic type},
url = {http://eudml.org/doc/262541},
volume = {33},
year = {1996},
}
TY - JOUR
AU - Tsuji, Mikio
TI - Extension of solutions for Monge-Ampère equations of hyperbolic type
JO - Banach Center Publications
PY - 1996
VL - 33
IS - 1
SP - 437
EP - 447
LA - eng
KW - Monge-Ampère equations
UR - http://eudml.org/doc/262541
ER -
References
top- [1] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 2, Interscience, New York, 1962. Zbl0099.29504
- [2] G. Darboux, Leçons sur la théorie générale des surfaces, tome 3, Gauthier-Villars, Paris, 1894.
- [3] E. Goursat, Leçons sur l'intégration des équations aux dérivées partielles du second ordre, tome 1, Hermann, Paris, 1932.
- [4] E. Goursat, Cours d'analyse mathématique, tome 3, Gauthier-Villars, Paris, 1927. Zbl53.0180.05
- [5] J. Hadamard, Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques, Hermann, Paris, 1932. Zbl58.0519.16
- [6] S. Izumiya, Geometric singularities for Hamilton-Jacobi equation, in: Adv. Stud. Pure Math. 22, 1993, 89-100. Zbl0837.35090
- [7] S. Izumiya and G. T. Kossioris, Semi-local classification of geometric singularities for Hamilton-Jacobi equations, preprint. Zbl0837.35091
- [8] H. Lewy, Über das Anfangswertproblem bei einer hyperbolischen nichtlinearen partiellen Differentialgleichung zweiter Ordnung mit zwei unabhängigen Veränderlichen, Math. Ann. 98 (1928), 179-191. Zbl53.0473.15
- [9] H. Lewy, A priori limitations for solutions of Monge-Ampère equations I, II, Trans. Amer. Math. Soc. 37 (1934), 417-434; 41 (1937), 365-374. Zbl61.0513.02
- [10] V. V. Lychagin, Contact geometry and non-linear second order differential equations, Russian Math. Surveys 34 (1979), 149-180. Zbl0427.58002
- [11] T. Morimoto, La géométrie des équations de Monge-Ampère, C. R. Acad. Sci. Paris 289 (1979), 25-28. Zbl0425.35023
- [12] S. Nakane, Formation of singularities for Hamilton-Jacobi equations in several space variables, J. Math. Soc. Japan 43 (1991), 89-100. Zbl0743.35043
- [13] S. Nakane, Formation of shocks for a single conservation law, SIAM J. Math. Anal. 19 (1988), 1391-1408. Zbl0681.35057
- [14] A. Pliś, Caharacteristic of nonlinear partial differential equations, Bull. Acad. Polon. Sci. Cl. III 2 (1954), 419-422.
- [15] M. Tsuji, Formation of singularities for Hamilton-Jacobi equation II, J. Math. Kyoto Univ. 26 (1986), 299-308. Zbl0655.35009
- [16] M. Tsuji, Prolongation of classical solutions and singularities of generalized solutions, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), 505-523. Zbl0722.35025
- [17] H. Whitney, On singularities of mappings of Euclidean spaces I, Ann. of Math. 62 (1955), 374-410. Zbl0068.37101
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.